A11100 988698

NBS PUBLICATIONS

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

100 1556 10.25-17

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Mechanical Engineering and Process Technology² — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted: mailing address Washington, DC 20234. Some divisions within the center are located at Boulder, CO 80303.

OF STANDARDS
LIBBARY
OCT 1 0 1980

Mot - Cir
QC100

L1556

Standard X-ray Diffraction Powder Patterns Section 17—Data for 54 Substances

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, and Boris Paretzkin

International Centre for Diffraction Data

Camden R. Hubbard and Simon J. Carmel

National Measurement Laboratory National Bureau of Standards Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25

Section 17-Data for 54 Substances
Nat. Bur. Stand. (U.S.), Monogr. 25-Sec. 17,114 pages (Oct. 1980)
CODEN: NBSMA6

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1980

CONTENTS

	Page		Page
ntroduction	1	Mercury acetate, C ₄ H ₆ Hg ₂ O ₄	51
		Mercury hydroxide nitrate, Hg(OH)NO ₃	52
Experimental patterns:		Niobium boride, ζ-NbB	54
43 4 4 4 4 5 6	_	Pentaerythritol, C ₅ H ₁₂ O ₄	55
Aluminum borate, Al ₁₈ B ₄ 0 ₃₃	5	Phenylhydrazine hydrochloride,	- /
Ammonium borate hydrate, NH ₄ B ₅ 0 ₈ ·4H ₂ 0	7	C ₆ H ₈ N ₂ ·HCl	56
Ammonium nickel sulfate hydrate,	•	Potassium arsenic fluoride, KAsF ₆	57
$(NH_4)_2Ni(SO_4)_2 \cdot 6H_2O \dots$	9	Potassium hydrogen iodate, KH(IO ₃) ₂	58
Ammonium sulfate, (NH ₄) ₂ S ₂ O ₃	11	Potassium hydrogen oxalate hydrate,	
Ammonium sulfate, (NH ₄) ₂ S ₂ O ₈	13	C ₄ H ₃ KO ₈ ·2H ₂ O	60
Cadmium bromate hydrate,	• /	Potassium niobium oxide, KNb03	62
Cd(Br0 ₃) ₂ ·2H ₂ 0	14	Potassium sulfate, K ₂ S ₂ O ₈	64
Calcium sulfate hydrate (gypsum),	3.6	Scandium boride, ScB ₂	66
CaSO ₄ ·2H ₂ O	16	Silver mercury iodide, β-Ag ₂ HgI ₄	67
Calcium tin oxide, CaSnO ₃	18	Sodium chlorate hydrate, NaClO ₄ ·H ₂ O	68
Cerium nitrate hydrate, Ce(NO ₃) ₃ ·6H ₂ 0	20	Sodium glutamate hydrate,	7.0
Chromium boride, ζ-CrB	22	C ₅ H ₈ NNaO ₄ ·H ₂ O	70
Chromium chloride, CrCl ₃	23	Sodium hydrogen oxalate hydrate,	
Chromium iron oxide, $Cr_{1.3}Fe_{0.7}O_3$	24	C ₂ HNaO ₄ ·H ₂ O	72
Chromium oxide, CrO ₃	25	Sodium iodate hydrate, NaIO ₃ ·H ₂ O	73
Cinchonine, C ₁₉ H ₂₂ N ₂ O	26	Sodium sulfate hydrate, Na ₂ S ₂ O ₃ ·5H ₂ O	74
Clopenthixol hydrate, C ₂₂ H ₂₅ ClN ₂ OS·2H ₂ O	28	Strontium bromate hydrate,	
Copper hydroxide phosphate (libethenite),		$Sr(Br0_3)_2 \cdot H_20$	76
Cu ₂ (OH)PO ₄	30	Strontium chromium oxide, SrCr ₂ 0 ₇	77
Glutamic acid, β-L-C ₅ H ₉ NO ₄	32	Strontium chromium oxide hydrate,	
Glycine, α -C ₂ H ₅ NO ₂	34	SrCr ₂ 0 ₇ ·3H ₂ 0	79
Guanidinium chloride, CH ₅ N ₃ ·HCl	35	Thiosemicarbazide, CH ₅ N ₃ S	81
Hexamethylenetetramine, C ₆ H ₁₂ N ₄	37	Thiourea, CH ₄ N ₂ S	83
Hydrazinium sulfate, (NH ₃) ₂ SO ₄	38	Tin chloride hydrate, SnCl ₂ ·2H ₂ O	84
Iron chloride hydrate (hydromolysite),		Zirconium silicide, ZrSi ₂	86
FeCl ₃ ·6H ₂ 0	40		
Iron fluoride hydrate, β-FeF ₃ ·3H ₂ 0	41	Cumulative indices	
Lanthanum nickel platinum,			
LaNi _{0.25} Pt _{4.75}	42	(Circular 539, Volumes 1-10 and	
Lead bromide, PbBr ₂	43	Monograph 25, Sections 1-17 inclusive)	
Lead iodate, Pb(IO ₃) ₂	45		
Lithium hydroxide, LiOH	46	1 7	0.7
Magnesium borate, MgB ₄ 0 ₇	47	1. Inorganic	87
Magnesium iodate hydrate,	4.0	2. Organic formula	103
Mg(IO ₃) ₂ ·4H ₂ O	48	3. Organic name	105
Manganese, α-Mn	50	4. Mineral	107

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Previous work has been published as a book entitled <u>Powder Diffraction Data from the Joint Committee</u> on <u>Powder Diffraction Standards</u> Associateship at the <u>National Bureau of Standards</u> (1976) (JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081). The volume is sold with an accompanying search manual, and contains 949 card images of patterns of experimental data, published originally as Circular 539 (vols. 1-10) and Monograph 25, Sections 1-12, and most of Section 13.

Individual copies of the Circular and Monograph are still available and may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. If a publication listed below is identified with a number, it must be used in ordering. All are available in hardcopy or microfiche; the price is not fixed and will be furnished on request.

NBS Publication	Numb	per	NBS Publication	<u>.</u>	Number
Vol Vol Vol Vol Vol Vol Vol	lume 1. PB 1 lume 2. PB 1 lume 3. PB 1 lume 4. PB 1 lume 5. PB 1 lume 6. PB 1 lume 7. PB 1 lume 8. PB 1 lume 9. PB 1 lume 10. PB 1	178 903 178 904 178 905 178 906 178 907 178 908 178 909 178 910		Section 1	.PB 178 430 .PB 178 431 .PB 194 872 .COM 72-50002 .COM 72-51079 .COM 74-50183 .COM 75-50162 .PB 254 073 .PB 272 372

Also, until the present supply is exhausted, the following issues are for sale from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Order by given catalog number, and add 25% to the price, for other than U.S. mailing.

	Catalog Number	Price
Section 12	SN 003-003-01376-5	\$1.50
Section 13	SN 003-003-01629-2	1.80
Section 14	SN 003-003-01842-2	2.75
Section 15	SN 003-003-01986-1	4.00
Section 16	SN 003-003-02128-8	5.00

ERRATA

Monograph 25

Section 16, pp. iii, 66, 176, 183: The corrected formula for sodium borate hydroxide hydrate (borax) is Na₂B₄O₅(OH)₄·8H₂O.

p. 1: In the 2nd column, last paragraph, line 5 from the bottom, the symbols should be $K\alpha_1$.

p. 129: In the paragraph "Structure", the space group should be P2₁/c.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 17. --- Data for 54 Substances

bv

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans and Boris Paretzkin JCPDS--International Centre for Diffraction Data

and

Camden R. Hubbard and Simon J. Carmel National Bureau of Standards

Standard x-ray diffraction patterns are presented for 54 substances. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated and the refractive indices were measured in some cases.

Key words: Crystal structure; lattice constants; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the JCPDS--International Centre for Diffraction Data, the File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the JCPDS, the program at the National Bureau of Standards contributes new data to this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 54 experimental patterns, and is the twenty-seventh of the series of Standard X-ray Diffraction Powder Patterns.

EXPERIMENTAL POWDER PATTERNS

<u>CAS registry number</u>. The Chemical Abstracts Service Registry Number is included, when available, to help identify the sample. This number forms the basis for computer aided searching of Chemical Abstracts.

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory.

TJCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Francaise de Minéralogie et de Cristallographie.

²See previous page for other published volumes.

Appropriate annealing or recrystallization of the samples improved the quality of most of the patterns. A check of phase purity was provided by indexing the x-ray pattern.

Optical data. When reported, optical measurements were made by grain immersion methods, in white light, using oils standardized in sodium light, in the refractive index range 1.49 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. For spacing determinations, a shallow holder was packed with a sample mixed with an internal standard. Choice of the standard was determined by the need for low angle and unobstructed reflections. The amount of standard was estimated so that the intensity of its strongest peak would be about equal to the intensity of the strongest peak of the sample.

To avoid errors associated with aberrations at the very top of the peaks, the readings of 20 were taken at positions about 20% of the way down from the top, and in the center of the peak width. The $K\alpha_2$ peaks were occasionally read to assist in establishing a $K\alpha_1$ peak position, but $K\alpha_2$ peaks were not reported.

At low angles, $K\alpha_1$ and $K\alpha_2$ peaks were unresolved for both the sample and the internal standard. The internal standard corrections were established from the theoretical values for $K\alpha_1$ and were applied to the unresolved low angle peaks, as well as to the resolved $K\alpha_1$ peaks in the higher angle regions. If the internal standard correction varied along the length of the pattern, linear interpolations were used.

The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in Table 1; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

Table 1

	W	Ag o	Si o
hkl	a=3.16524A	a=4.08651A	a=5.43088A
	±.00004	±.00002	±.00004
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.303
310	100.632		
311		77.390	56.1 2 3
2 2 2	114.923	81.533	
321	131.171		
400	153.535	97.875	69.131
331		110.499	76.377
420		114.914	
422		134.871	88.032
511/333		156.737	94.954
440			106.710
531			114.094
620			127.547
533			136.897
444			158.638

The internal standard Si powder is available as Standard Reference Material 640 [1974]. The lattice constant for the Si was refined from multiple powder data measurements made with tungsten as an internal standard [Swanson et al., 1966]. Single crystal cell parameter data were also collected. The lattice parameters from the two methods agreed within three parts in 10⁵ [Hubbard et al., 1975]. D-spacing results using SRM 640 will be in agreement with patterns recorded in this series of monographs since 1966.

All of our spacing measurements were recorded at 25 ± 1 °C on a diffractometer equipped with a focusing graphite or lithium fluoride crystal monochromator located between the sample and the scintillation counter. Pulse height discrimination was used as well. All measurements were performed using copper radiation: $\lambda(\text{CuK}\alpha_1, \text{peak}) = 1.540598\text{\AA}$ [Deslattes and Henins, 1973].

Structure, lattice constants. The space groups were listed with short Hermann-Mauguin symbols as well as the space group numbers given in the <u>International Tables</u> for <u>X-ray Crystallography</u>, Vol. I [1952].

Orthorhombic cell dimensions were arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants were transformed if necessary in order to follow the convention of Crystal Data [1973].

A computer program [Evans et al., 1963] assigned hkls and refined the lattice constants.

Cell refinement was based only upon 20obs values which could be indexed without ambiguity. The program minimized the value $\Sigma(\theta_{obs} - \theta_{calc})^2$. The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants in earlier publications of this series. The e.s.d.'s in the least significant figures are given in parentheses following the lattice constants.

In indexing cubic patterns, for a given reflection multiple hkl's were not utilized in the refinement or reported. Instead, the single appropriate index having the largest \underline{h} was listed. The number of significant figures reported for d-values varied with the symmetry and crystallinity of each sample.

The number of significant figures at any reported d-value was derived from the average error in $|2\theta_{\rm obs}$ - $2\theta_{\rm calc}|$ and $\Delta d/d$ = $-\cot\theta$ $\Delta\theta$. With these conditions, the rounding of any specific d at the given number of significant digits yielded an error in its corresponding 20 which was less than the average error in 20.

Densities. These were calculated from the specified lattice constants, the Avogadro number 6.0220943 x 10²³ [Deslattes et al., 1974] and 1977 atomic weights published by the International Union of Pure and Applied Chemistry [1979].

Figure of merit. Several figures of merit ratings are available for assessing indexed powder data. M_{20} [de Wolff, 1968] is a criterion for the reliability of the unit cell and indexing. A value of $M_{20} > 10$ will guarantee the essential correctness of the indexing provided there are not more than 2 spurious lines $(X_{20} < 2)$ [de Wolff, 1968]. In general, patterns reported in this publication had $M_{20} > 20$ and X = 0. M_{20} was specified for any pattern indexed with a cell derived only through computer indexing from powder data, without further confirmation.

The accuracy and completeness of measured interplanar spacings was conveniently reported as F_N [Smith and Snyder, 1979]. The format used in this publication was F_N = overall value ($\left|\overline{\Delta 2\theta}\right|$, N_{poss}), where N, the number of observed reflections was chosen as 30, or the maximum number of lines of the pattern if the entire pattern had fewer than 30 lines. The "overall value" was the figure of merit, F_N , as defined by Smith and Snyder [1979], and $\left|\overline{\Delta 2\theta}\right|$ was the average absolute magnitude of discrepancy between observed and calculated 20 values for each reported hkl. Nposs was the number of diffraction lines allowed in the space group, up to the Nth observed and indexed line. Co-positional lines such as the cubic 221 and 300 are counted as one possible line.

<u>Intensity measurements</u>. It was found that samples which gave satisfactory intensity patterns

usually had an average particle size smaller than 10 µm, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (see Figure 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. Occasionally, a rotating sample holder was used instead. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the strongest line.

As a check on reproducibility, each sample was mounted at least 3 times. The intensity values were determined for each of the mountings. Theta-compensating (variable divergence) slits were sometimes used to gather the intensity data. In that case, the average I(comp) for each spacing was converted to an equivalent fixed slit value, using the approximate equation:

$$I(fixed) = \frac{I(comp)}{\sin \theta}$$

The reported I^{rel} value for each observed spacing was the scaled average of the separate measurements, rounded to the nearest integer. The estimated standard deviation, σ , in the relative intensity values was calculated from the values of the five strongest lines, excluding the line with I = 100.

$$\sigma_i^2 = \frac{1}{n-1} \sum_{j=1}^{n} (I_j^{rel}(k) - \langle I \rangle_j)^2$$

and

$$\sigma = \left\{ \frac{1}{m} \sum_{i=1}^{m} \sigma_i^2 \right\}^{\frac{1}{2}}$$

where .

m is the number of strong lines (usually 5), and

n is the number of independent observations i, per line.

Where conversion of intensities for effects of theta-compensating slits was required, each $\sigma_{}_{}$ was multiplied by the conversion factor

$$f = \frac{I(comp)}{I(fixed)}$$

Reference Intensity Ratio, I/Icorundum.

The reference intensity ratio, I/I_c, has been defined as the direct ratio of the intensity of the strongest reflection of a sample, to the intensity of the reflection 113 (hexagonal) of corundum (α -Al₂O₃) [Visser and de Wolff, 1964]. In this publication the ratios I/I_c were tabulated for copper K α radiation, for a 1:1 mixture

Figure 1.

Figure 2.

by weight of the sample and corundum. Occasionally ${\rm I/I}_{\rm C}$ was not determined because it was not feasible.

A procedure has been adopted, to achieve greater statistical accuracy [Hubbard and Smith, 1977]. For any weight fractions of sample and corundum, \mathbf{x}_S and \mathbf{x}_C ($\mathbf{x}_S=1-\mathbf{x}_C$), the intensities for reflection \underline{h} of the sample and \underline{k} of corundum were measured for several combinations of \underline{h} and \underline{k} usually within the same region of 20, to provide indications of possible preferred orientation, extinction, or other systematic errors. The reference intensity ratio is then given by

$$\frac{I(h_o)}{I_c(113)} = \frac{x_c}{x_s} \cdot \frac{I_c^{rel}(\underline{k})}{I_c^{rel}(\underline{h})} \cdot \frac{I(\underline{h})}{I(\underline{k})}$$

and (h_0) indicates specifically which reflection was chosen for tabulation purposes. For each of our patterns, the reflection (h_0) will be the one with I = 100 since only copper radiation was used. Typically, at least 3 sets of reflections and 2 mountings of the mixture were used to obtain 6 or more values for the reference intensity ratio, I/I_c . These values yield the tabulated average $\langle I/I_c \rangle$. From these data, the estimated deviation, Δ , was obtained from

$$\Delta = \frac{\sum_{i=1}^{n} \left| (I/I_c)_i - \langle I/I_c \rangle \right|}{n}$$

where $\underline{\mathbf{n}}$ is the number of measurements of the reference intensity ratio. The estimated deviation in the least significant figures is given in parentheses.

Format of tables. The printing of the data has been computerized. Superimposed reflections were treated in one of two ways. If a d-spacing had only two possible indices, an M was added to the d-spacing which was repeated on the next line, but with the second index. However, if there were more than two possible indices, a plus sign was used in like manner. In both cases, the composite intensity was printed only once and aligned with the first reflection. The symbol "IL" in the intensity column was used to indicate "less than 1".

UNITS

In this publication the Angström unit (1Å = 100 pm) was selected for presentation of the d-spacings and lattice parameters to maintain consistency with (a) the earlier publications of Standard X-ray Diffraction Powder Patterns (Circular 539 volumes 1-10 and Monograph 25 sections 1-16), (b) the publications of the International Union of Crystallography: Acta Crystallographica and the Journal of Applied Crystallography, and (c) the continuing publication of cards and search manuals of the Powder Diffraction File (now consisting of over 33,000 entries). The PDF search manuals are based on the d-spacings in Å of the three strongest lines. Consistent with the choice of the Å unit for length, the volume of the unit cell is expressed in ų (1ų = 1 x 10⁻³⁰ m³). Densities are reported in g/cm³ (1 gm/cm³ = 10³ kg/m³).

ACKNOWLEDGMENTS

We would like to thank Carolyn Wingo of the JCPDS Associateship for her assistance, particularly for keyboarding the data and helping with the proofreading of this manuscript. Appreciation is also expressed to the Text Editing Facility of the National Measurement Laboratory of NBS for typing the manuscript.

REFERENCES

Alexander, L., Klug, H. P., and Kummer, E. (1948). J. Appl. Phys., <u>19</u>, No. 8, 742.

- Crystal Data (1973). (3rd Ed. Published jointly by the U.S. Department of Commerce, National Bureau of Standards, Washington, D.C. 20234, and the Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA 19081).
- Deslattes, R. D. and Henins, A. (1973). Phys. Rev. Lett. 31, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Carroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J., and Shields, W. R. (1974). Phys. Rev. Lett. 33, 463.
- 33, 463.

 Evans, H. T., Jr., Appleman, D. E., and
 Handwerker, D. S. (1963). Report #PB216188,
 U.S. Dept. of Commerce, National Technical
 Information Center, 5285 Port Royal Rd.,
 Springfield, VA 22151, \$3.50.
- Springfield, VA 22151, \$3.50.
 Hartshorne, N. H. and Stuart, A. (1970).

 <u>Crystals and the Polarizing Microscope</u>
 (Edward Arnold and Co., London, 4th Ed.)
- Hubbard, C. R. and Smith, D. K. (1977). Advances in X-ray Analysis, (Plenum Publishing Corporation, 227 West 17th St., New York, NY 10011), 20, p. 27.
- Hubbard, C. R., Swanson, H. E., and Mauer, F. A. (1975). J. Appl. Crystallogr. 8, 45.
- International Tables for X-ray Crystallography,
 I (1952). (The Kynoch Press, Birmingham,
 Eng.).
- International Union of Pure and Applied Chemistry (1979). Pure Appl. Chem. 51, No. 2, 407.
- ISCC-NBS Centroid Color Charts, SRM 2106, or Color Kit, SRM 2107 which contains both SRM 2106 and Color, an NBS Special Publication #SP 440. These can be obtained from the National Bureau of Standards, Office of Standard Reference Materials, Washington, DC 20234. Current prices will be quoted on request.
- Palache, C., Berman, H., and Frondel, C. (1944).

 <u>Dana's System of Mineralogy</u> (John Wiley and Sons, New York, 7th Ed.), <u>I</u>, 6.
- Smith, G. S. and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60.
- Standard Reference Material 640 (1974), Silicon
 Powder X-ray Diffraction Standard, obtainable
 from the National Bureau of Standards, Office
 of Standard Reference Materials, Washington,
 DC 20234. Current price will be quoted on
 request.
- Swanson, H. E., Morris, M. C., and Evans, E. H. (1966). Nat'l. Bur. Std. U.S. Monogr. 25, Sec. 4. 3.
- Visser, J. W. and de Wolff, P. M. (1964). "Absolute Intensities," Report 641.109, Technisch Physische Dienst, Delft, Netherlands.
- Wolff, P. M. de (1968). J. Appl. Crystallogr. 1, 108.

CAS registry no. 12005-61-7

The sample was prepared by heating a 1:1 mixture of ${\rm Al}_2{\rm O}_3$ and ${\rm H}_3{\rm BO}_3$ together at 1250 °C. The compound was later annealed at 1500 °C.

Color Colorless

Structure
Orthorhombic, Amam (63), A2₁am (36), or
Ama2 (40), Z = 1 [Scholze, 1956]. Baumann
and Moore [1942] reported data for this
phase. Although the lattice constants
were in good agreement with NBS constants,
their pattern does not index on the given
cell..

Lattice constants of this sample

a = 7.6874(8) Å b = 15.0127(15) c = 5.6643(6)

a/b = 0.5121c/b = 0.3773

Volume 653.70 Å³

Density (calculated) 2.685 g/cm³

Figure of merit $F_{30} = 65.2(0.010,45)$

Reference intensity
I/I = 1.27(5)

284, 272.

Additional pattern
1. PDF card 9-248 [Scholze, 1956]

References
Baumann, H. N., Jr. and Moore, C. H., Jr.
(1942). J. Amer. Chem. Soc. <u>25</u>, No. 14,
391.
Scholze, H. (1956). Z. Anorg. Allg. Chem.

 $CuK\alpha_1 y = 1.540598 A; temp. 25±1 °C$ Internal standard Ag, a = 4.08651 A rel hkl d(A) 2θ(°) $\sigma = \pm 3$ 7.52 0 2 0 1 11.76 100 5.375 1 2 0 16.48 5.301 18 0 1 1 16.71 4.365 52 1 1 1 20.33 3.846 2 0 0 23.11 0 3.750M 16 4 0 23.71 0 3 1 3.750M 23.71 2 2 0 14 26.04 3.419 4 0 3.373M 42 1 26.40 1 3 1 3.373M 26.40 2 28.67 3.111 2 1 1 7 0 0 2 2.831 31.58 2.685M 41 2 4 0 33.35 2.685M 2 3 1 33.35 0 2 2 2.649 4 33.81 2.505 25 1 2 2 35.82 2.424 4 3 2 0 37.05 2.307 5 3 1 1 39.01 0 2 2.281 3 2 39.48 0 4 2 2.260 14 39.85 27 2 2 2 41.36 2.181 2.169 10 1 4 2 41.61 3 4 0 2.116M 21 42.69 3 3 1 2.116M 42.69 2 6 0 2.097 3 43.11 0 7 1 2.005 1L 45.18 1.9474 4 2 4 2 46.60 1.9415 2 1 7 1 46.75 4 0 0 1.9218 2 47.26 0 1 3 1.8733 5 48.56 1.8618 4 4 2 0 48.88 3 5 1 1.8424M 13 49.43 1.8424M 3 2 2 49.43 1.8196 12 1 1 3 50.09 1.7896 3 3 6 0 50.99 1.7776 5 2 7 1 51.36 53.16 1.7215 2 1 3 3 1.7105M 6 4 4 0 53.53 1.7105M 4 3 1 53.53 1.6852 14 2 6 2 54.40 4 0 2 1.5904 57.94 1.5650M 1 5 58.97 6 0 8 2 1.5650M 58.97 1.5564M 3 4 5 1 59.33 2 2 1.5564M 59.33

Aluminum Borate, $Al_{18}B_4O_{33}$ - (continued)

d(A)	I ^{rel}	hk	e	2θ(°)
	$\sigma = \pm 3$			
1.5330	2	1 8	2	60.33
1.5130M	19	3 6	2	61.21
1.5130H	19	3 1	3	61.21
1.4764+	3	5 1	1	62.90
1.4764+	3	2 5	3	62.90
1.4643	2	4 4	2	63.48
1.4496	7	2 8	2	64.20
1.4159	9	0 0	4	65.92
1.3982	2	2 10	0	66.86
1.3876	1	4 7	1	67.44
1.3694	2	1 2	4	68.46
1.3560	3	3 5	3	69.23
1.3425M	3	4 8	0	70.03
1.3425M		4 6	2	70.03
1.3299+	10	5 2	2	70.79
1.3299+		2 7	3	70.79
1.3067	6	1 10	2	72.24
1.2953	2	3 10	0	72.98
1.2810	1	6 0	0	73.93
1.2716	1	5 4	2	74.57
1.2631	1	6 2	0	75.16
1.2533M	7	2 10	2	75.85
1.2533M		2 4	4	75.85
1.2513	6	0 12	0	75.99
1.2339	2	1 9	3	77.26
1.2296	1	4 9	1	77.58
1.2231	1	3 2	4	78.07
1.2129+	1	4 8	2	78.85
1.2129+		6 4	0	78.85
1.1890+	1	5 6	2	80.76
1.1890+		2 9	3	80.76
1.1770	2	3 4	4	81.76

1. Ammonium pentaborate tetrahydrate

2. APT

CAS registry no. 12229-12-8

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, NJ. It was recrystallized from an aqueous solution at room temperature.

Color

Colorless

Structure

Orthorhombic, Bba2 (41), Z = 4 [Cook and Jaffe, 1957; Clark and Christ, 1959].

Lattice constants of this sample

a = 11.033(3) Åb = 11.332(3)

c = 9.238(3)

a/b = 0.9736c/b = 0.8152

Volume

1155.0 A³

Density

(calculated) 1.565 g/cm³

Figure of merit

 $F_{30} = 57.2 (0.014,38)$

Reference intensity

 $I/I_{corundum} = 1.08(6)$

Additional pattern

1. PDF card 12-638 [Clark and Christ, 1959]

References

Clark, J. R. and Christ, C. L. (1959).

Amer. Mineral. 44, 1150.

Cook, W. R., Jr. and Jaffe, H. (1957).

Acta Crystallogr. 10, 705.

CuK α_1 λ = 1.540598 $\overset{\circ}{A}$; temp. 25±1 °C Internal standard Si, a = 5.43088 $\overset{\circ}{A}$

d(A)	Irel	hkl	2θ(°)
	$\sigma = \pm 2$		
6.00 5.67	63 12	1 1 1 0 2 0	14.74 15.63
5.52 4.951	46 2	2 0 0 2 1 0	16.04 17.90
4.617	7	0 0 2	19.21
4.427 3.544	1 80	1 2 1 2 0 2	20.04 25.11
3.383	100	2 1 2	26.32
3.334	11	1 3 1	26.72
3.271	9	3 1 1	27.24
3.003	4	2 2 2 3 2 1	29.73
2.926 2.868	7 4	3 2 1 1 1 3	30.53 31.16
2.834	31	0 4 0	31.54
2.760	2	4 0 0	32.41
2.680	2	4 1 0	33.41
2.627	5	1 2 3	34.10
2.586 2.533	1 8	2 3 2 3 1	34.66 35.41
2.479	1L	4 2 0	36.20
2.414	1	0 4 2	37.21
2.367	4	4 0 2	37.98
2.332 2.317	4 9	1 3 3 4 1 2	38.58 38.83
2.317 2.312M	9	3 1 3	38.93
2.312M		0 0 4	38.93
2.212	8	2 4 2	40.75
2.182	16	3 4 1	41.35
2.178 2.158	16 4	3 2 3 1 5 1	41.43 41.83
2.138	3	0 2 4	42.24
2.107	7	5 1 1	42.88
2.095M 2.095M	2	2 5 0 2 1 4	43.14 43.14
2.048	2	2 1 4 1 4 3	44.18
2.007M	7	5 2 1	45.15
2.007M		4 3 2	45.15
1.909 1.888M	6 2	2 5 2 3 5 1	47.59 48.16
1.888M	2	0 6 0	48.16
1.856	4	2 3 4	49.03
1.817	4	4 4 2	50.16
1.7998M 1.7998M	2	1 5 3 1 1 5	50.68 50.68
1.7996H 1.7715M	3	5 1 3	51.55
			0 - 100

Ammonium Borate Hydrate, $NH_4B_50_8\cdot 4H_20$ - (continued)

	d(Å)	I ^{rel} σ = ±2		hkl		2θ(°)
	1.7715M		4	0	4	51.55
1	1.7506M	3	4	5	0	52.21
	1.7506M		4	1	4	52.21
	1.7102M	2	5	4	1	53.54
	1.7102M		5	2	3	53.54
	1.7029	2	2	1.	4	53.79
				4		
	1.6533M	1	6	3	0	55.54
	1.6533M		3	6	1	55.54
	1.6206	1L	5	3	3	56.76
	1.5780	1	1	7	1	58.44
	1.5427	1	6	4	0	59.91

CAS registry no. 51287-85-5
Sample The sample was obtained from the Fisher
Scientific Co., Fair Lawn, NJ.
Color Strong bluish green
Structure Monoclinic, $P2_1/a$ (14), $Z=2$. The structure was determined by Grimes et al. [1963] and by Montgomery and Lingafelter [1964]. It is isostructural with other "Tutton" salts [Tutton, 1916].
Lattice constants of this sample
a = 9.1862(15) A b = 12.468(2)
c = 6.2423(10)
$\beta = 106.93(2)^{\circ}$
a/b = 0.7368 c/b = 0.5007
Volume o 684.0 A ³
Density (calculated) 1.918 g/cm ³
Figure of merit $F_{30} = 63.7(0.012,38)$
Reference intensity I/I corundum = 0.92(5)
Additional pattern 1. PDF card 12-454 [Institute of Physics, Cardiff, Wales]
References Grimes, N. W., Kay, H. F., and Webb, M. W. (1963). Acta Crystallogr. 16, 823. Montgomery, H. and Lingafelter, E. C. (1964). Acta Crystallogr. 17, 1478. Tutton, A. E. (1916). Trans. Roy. Soc. London Ser. A 216, 1.
$CuK\alpha_1 \lambda = 1.540598 \text{ A: temp. } 25\pm1 \text{ °C}$

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C						
Inte	rnal standa:	rd W,	а	= 3.	16524 Å	
d(Å)	I ^{rel} σ = ±5		hkl		2Θ(°)	
7.19 6.24 5.98 5.388	4 30 14 36	0 0	1 2 0 1	0 1	12.30 14.19 14.80 16.44	
5.248	7	-1		_	16.88	

d(A)	I^{rel} $\sigma = \pm 5$	hk&	20(°)
5.090	20	1 2 0	17.41
4.397	19	2 0 0	20.18
4.316	21	0 2 1	20.56
4.243	36	-1 2 1	20.92
4.166	100	-2 0 1	21.31
4.147	66	2 1 0	21.41
3.952	6	-2 1 1	22.48
3.757	88	1 3 0	23.66
3.586	16	1 2 1	24.81
3.466	4	-2 2 1	25.68
3.410	14	0 3 1	26.11
3.376	18	-1 3 1	26.38
3.119	20	0 4 0	28.60
3.037	32	2 1 1	29.39
3.027	44	-1 1 2	29.49
2.943	4	-2 3 1	30.35
2.913	4	-3 1 1	30.67
2.903	5	0 1 2	30.77
2.892	6	-2 0 2	30.89
2.853	6	3 1 0	31.33
2.816	6	-2 1 2	31.75
2.796	28	2 2 1	31.98
2.790	26	-1 2 2	32.05
2.742	3	-1 4 1	32.63
2.703	8	-3 2 1	33.12
2.651 2.623 2.550 2.541M 2.541M	1 2 6 11	3 2 0 -2 2 2 1 1 2 2 4 0 1 4 1	33.79 34.16 35.17 35.29 35.29
2.501	7	2 3 1	35.88
2.430	25	-3 3 1	36.96
2.395	3	3 3 0	37.52
2.374	2	-2 3 2	37.86
2.302	2	0 5 1	39.10
2.208M 2.208M 2.166+ 2.166+ 2.156M	16 7 9	1 3 2 2 4 1 1 5 1 4 1 0 0 4 2	40.84 40.84 41.67 41.67
2.156M 2.134 2.120 2.072 2.052	9 6 10 2	2 1 2 3 4 0 -2 4 2 4 2 0 -2 0 3	41.86 42.31 42.62 43.64 44.09
2.049	2	-1 1 3	44.17
2.024	3	-2 1 3	44.74
2.005	1	-4 3 1	45.19
1.990	4	0 0 3	45.54
1.975	2	-4 2 2	45.92
1.963 1.956 1.950M 1.950M 1.942M	4 3 2 2	0 6 1 -1 6 1 2 5 1 -2 2 3 4 3 0	46.22 46.39 46.53 46.53 46.73

Ammonium Nickel Sulfate Hydrate, $(NH_4)_2Ni(SO_4)_2 \cdot 6H_2O$ - (continued)

d(Å)	I^{rel} $\sigma = \pm 5$	hl	k.l	2θ(°)
1.942M 1.915	7		4 2	46.73 47.43
1.905	10	-3		47.71
1.899	10		5 0	47.71
1.878M	3		5 1	48.44
1.878M		2	6 0	48.44
1.8575	7	-1	3 3	49.00
1.8389	6	-2	3 3	49.53
1.8179	3	- 5	1 1	50.14
1.8095M	5	4	2 1	50.39
1.8095M		1	1 3	50.39
1.7949M	10	0 :	3 3	50.83
1.7949M		4	4 0	50.83
1.7919	8	_	4 2	50.92
1.7632	2	-5	2 1	51.81
1.7588	4		5 2	51.95
1.7401	4	_	1 0	52.55
1.7288M	2	-1	6 2	52.92
1.7288M		_	4 3	52.92
1.7176	5	3 !	5 1	53.29
1.7132	6		4 3	53.44
1.7052	2 5		6 2	53.71
1.6855M	5	-4	2 3	54.39
1.6855M			5 1	54.39
1.6826	4	3	3 2	54.49
1.6750	3	1	3 3	54.76

ynonym	d(Å)	rel	hkl	2Θ(°)
1. Ammonium thiosulfate	4(11)	$\sigma = \pm 8$		20()
AS registry no.	4 257	18	2 0 1	20.85
7783-18-8	4.257	16	-1 1 2	25.42
	3.469	14	-2 0 2	25.66
ample	3.353	32	1 1 2	26.56
The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ.	3.248	18	0 2 0	27.44
color	3.199	28	2 0 2	27.87
Colorless	3.046	22	0 2 1	29.30
	3.010	74	3 1 0	29.66
tructure	2.925	8 9	0 0 3 -3 1 1	30.54 30.65
Monoclinic, $C2/m$ (12), $Z = 4$. The structure	2.915	9	-5 1 1	30.03
was determined by Brunt [1946]. A line at	2.785	9	3 1 1	32.11
$2\theta = 23.06$ with I = 4, could not be indexed.	2.739	6	2 2 0	32.67
AA1	2.629M	62	-2 0 3	34.07
attice constants of this sample	2.629M		-1 1 3	34.07
a = 10.2233(15) Å b = 6.4956(9)	2.612	32	0 2 2	34.31
c = 8.8074(10)	2.582	14	2 2 1	34.71
$\beta = 94.66(1)^{\circ}$	2.569	13	-3 1 2	34.90
	2.547	8	4 0 0	35.21
a/b = 1.5739	2.536	8	1 1 3	35.36
c/b = 1.3559	2.500	2	-4 0 1	35.89
olume o	2.453	5	2 0 3	36.61
582.93 A ³	2.402	6	3 1 2	37.41
	2.395	6	4 0 1	37.52
ensity	2.371	20	-2 2 2	37.92
(calculated) 1.689 g/cm ³	2.286	6	-4 0 2	39.39
igure of merit	2.280	6	2 2 2	39.50
$F_{30} = 91.0(0.010,34)$	2.195	6	0 0 4	41.09
30	2.178	6	-3 1 3	41.42
eference intensity	2.129	3	4 0 2	42.42
$I/I_{corundum} = 0.94(3)$	2.118	2	1 3 0	42.65
dditional pattern	2.078	4	-2 0 4	43.51
1. PDF card 1-844 [Hanawalt et al., 1938]	2.0688M	5	-1 1 4	43.72
	2.0688M		-1 3 1	43.72
eferences	2.0510	4	1 3 1	44.12
Brunt, N. A. (1946). Diss. Leiden pp. 64. Hanawalt, J. D., Rinn, H. W., and Frevel, L. K.	2.0444	4	-2 2 3	44.27
(1938). Ind. Eng. Chem. Anal. Ed. 10, 457.	2.0270	2	3 1 3	44.67
,	2.0065	6	1 1 4	45.15
	1.9824	2	-4 2 1	45.73
CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C	1.9582M 1.9582M	7	2 0 4 2 2 3	46.33 46.33
Internal standard Si, a = 5.43088 A	1.0/51	2	E 1 0	16.66
	1.9451	3	5 1 0 4 2 1	46.66
$d(A)$ I^{rel} $hk\ell$ $2\Theta(^{\circ})$	1.9271	3 3	4 2 1 1 3 2	47.12 47.98
$\sigma = \pm 8$	1.8686M	3	-4 2 2	48.69
	1.8686M	J	5 1 1	48.69
5.480 16 1 1 0 16.16 5.093 44 2 0 0 17.40	1.8368	2	-3 1 4	49.59
4.741 93 -1 1 1 18.70	1.8319	2	- 5 1 2	49.73
4.553 100 1 1 1 19.48	1.8261	4	3 3 0	49.90
1,000 100 111 17,70	1.8186	12	0 2 4	50.12
4.386 76 0 0 2 20.23	1.8031		-3 3 1	50.58

Ammonium Sulfate, $(NH_4)_2S_2O_3$ - (continued)

d(Å)	$ I^{rel} $ $ \sigma = \pm 8 $		hkl		2θ(°)
1.7814	2	4	2	2	51.24
1.7559	5	0	0	2 5	52.04
1.7294M	10	-1	3	3	52.90
1.7294M		5	1	2	52.90
1.7159	3	5 3	1	4	53.35
1.7117	4	-3	3	2	53.49
1.7052	6	-4	2	3	53.71
1.7023M	6	-2	0	5	53.81
1.7023M		1	3	3	53.81
1.6933M	6	-1	1	5	54.12
1.6933M		-6	0	1	54.12
1.6801	4	- 5	1	3	54.58
1.6775	4	2	2	4	54.67
1.6599	2 2	3	3		55.30
1.6508	2	1	1	2 5	55.63
1.6196	1	2	0	5	56.80
1.6066	1	4	2	3	57.30
1.5967	1	0	4	1	57.69
1.5809	2	-3	3	3	58.32
1.5665	4	-3	1	5	58.91

Synonym Ammonium persulfate
Sample The sample was from Fisher Scientific Co. Fair Lawn, NJ. The sample was hygroscopic.
Color Colorless
Structure Monoclinic, $P2_1/n(14)$, $Z=2$. The structure of $(NH_4)_2S_2O_8$ has been determined by Zachariasen and Mooney [1934] and refined by Sivertsen and Sorum [1969].
Lattice constants of this sample a = 7.829(2) b = 8.0075(14) c = 6.1483(12) β = 95.12(2)°
a/b = 0.9777 c/b = 0.7678
Volume 0 383.90 Å ³
Density (calculated) 1.974 g/cm ³
Figure of merit $F_{30} = 41.9(0.015,48)$
Additional pattern 1. PDF card 11-551 [University College, Cardiff, Wales]
References Sivertsen, B. K. and Sorum, H. (1969) Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 130, 449. Zachariasen, W. H. and Mooney, R. C. L. (1934) Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 88, 63.
$CuK\alpha_1 \ \lambda = 1.540598 \ A; \ temp. 25±1 °C$
Internal standard W, a = 3.16524 Å

	$_{1}$ λ = 1.540 rnal standa			_	0
d(A)	I^{rel} $\sigma = \pm 6$		hkl		2θ(°)
5.583	42	1	1	0	15.86
5.038	62	-1	0	1	17.59
4.862	14	0	1	1	18.23
4.621	10	1	0	1	19.19
4.261	12	-1	1	1	20.83

3.501 69 2 1 0 25 3.347 100 0 2 1 26 3.154 50 -2 1 1 28 3.063 16 0 0 2 29 3.027 2 1 2 1 29 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	. 23 . 23 . 99 . 42 . 61
$\sigma = \pm 6$ $3.996M $. 23 . 23 . 99 . 42 . 61
3.996M 50 0 2 0 22. 3.996M 1 1 1 1 22. 3.560 62 1 2 0 24. 3.501 69 2 1 0 25. 3.347 100 0 2 1 26. 3.154 50 -2 1 1 28. 3.063 16 0 0 2 29. 3.027 2 1 2 1 29. 2.945 19 2 1 1 30. 2.860 18 0 1 2 31. 2.761 2 -1 1 2 32. 2.606 6 -2 2 1 34.	. 23 . 99 . 42 . 61
3.996M 1 1 1 1 22 3.560 62 1 2 0 24 3.501 69 2 1 0 25 3.347 100 0 2 1 26 3.154 50 -2 1 1 28 3.063 16 0 0 2 29 3.027 2 1 2 1 2 2 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	. 23 . 99 . 42 . 61
3.996M 1 1 1 1 22 3.560 62 1 2 0 24 3.501 69 2 1 0 25 3.347 100 0 2 1 26 3.154 50 -2 1 1 28 3.063 16 0 0 2 29 3.027 2 1 2 1 2 2 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	. 23 . 99 . 42 . 61
3.560 62 1 2 0 24 3.501 69 2 1 0 25 3.347 100 0 2 1 26 3.154 50 -2 1 1 28 3.063 16 0 0 2 29 3.027 2 1 2 1 2 1 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	.99 .42 .61 .27
3.501 69 2 1 0 25 3.347 100 0 2 1 26 3.154 50 -2 1 1 28 3.063 16 0 0 2 29 3.027 2 1 2 1 29 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	.42 .61 .27 .13
3.347 100 0 2 1 26. 3.154 50 -2 1 1 28. 3.063 16 0 0 2 29. 3.027 2 1 2 1 29. 2.945 19 2 1 1 30. 2.860 18 0 1 2 31. 2.761 2 -1 1 2 32. 2.606 6 -2 2 1 34.	.61
3.347 100 0 2 1 26. 3.154 50 -2 1 1 28. 3.063 16 0 0 2 29. 3.027 2 1 2 1 29. 2.945 19 2 1 1 30. 2.860 18 0 1 2 31. 2.761 2 -1 1 2 32. 2.606 6 -2 2 1 34.	.61
3.154 50 -2 1 1 28 3.063 16 0 0 2 29 3.027 2 1 2 1 29 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	. 27
3.063 16 0 0 2 29 3.027 2 1 2 1 29 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	. 13
3.063 16 0 0 2 29 3.027 2 1 2 1 29 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	. 13
3.027 2 1 2 1 29 2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	
2.945 19 2 1 1 30 2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	
2.860 18 0 1 2 31 2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	
2.761 2 -1 1 2 32 2.606 6 -2 2 1 34	
2.606 6 -2 2 1 34.	. 25
2.606 6 -2 2 1 34.	
2.526 3 1 3 0 35	.51
2.483 28 2 2 1 36.	. 15
2.475M 25 -3 0 1 36.	.27
2.475M 3 1 0 36.	. 27
	92
	.39
2.370 4 -1 2 2 37	
2.309M 8 1 3 1 38.	.97
2.309M 2 0 2 38	
2.220 10 2 1 2 40 2.204 8 2 3 0 40	
2.181 2 3 2 0 41.	. 36
2.041 16 2 3 1 44.	. 35
2.019 2 -1 0 3 44.	. 85
2.012 4 0 3 2 45.	
2.007 6 3 2 1 45.	
1.978M 5 0 1 3 45 1.978M -1 3 2 45	
1.57611 1 5 2 45	. 0 4
1.940 3 1 4 0 46	80
1.933 8 1 0 3 46.	
1.921 4 1 3 2 47.	
	. 40
1.8625 6 3 3 0 48	.86
	.43
	.59
1.8145 2 -3 3 1 50.	. 24
1.7805 8 2 4 0 51	
1.7660 2 4 1 1 51.	
1.7509 3 3 3 1 52	.20
	.36
1.7285 2 -2 4 1 52	
	. 14
1.6750 2 0 4 2 54	.76
1 (5/0	4.0
	. 48
	. 64 . 56

1. Cadmium bromate dihydrate

CAS registry no. 19320-65-1

Sample

The sample was prepared by dissolving anhydrous $Cd(BrO_3)_2$ in water and letting it dry. The sample was then washed.

Color

Light orange yellow.

Structure

Orthorhombic, $P2_12_12_1$ (19), Z = 4. The structure was studied by Garcia-Blanco and Perales [1963].

Lattice constants of this sample

a = 9.2417(10) A b = 12.5015(13) c = 6.1762(6)

a/b = 0.7392c/b = 0.4940

Volume 713.57 A³

Density

(calculated) 3.763 g/cm³

Figure of merit $F_{30} = 62.5(0.012,39)$

Reference intensity
I/I = 2.9(2)

Additional pattern

1. PDF card 1-0353 (labelled monohydrate) [Hanawalt et al. 1938]

References

Garcia-Blanco, S. and Perales, A. (1963).
Acta Crystallogr. 16, A34.
Hanawalt, J. D., Rinn, H. W., and
Frevel, L. K. (1938). Ind. Eng. Chem.

Frevel, L. K. (1938). Ind. E. Anal. Ed. 10, 457.

6.24 5.538 5.172 5.131 4.746 4.621 4.397 3.969 3.799 3.714 3.700 3.546 3.453 3.236 3.184 3.123 2.996 2.990 2.959 2.929 2.851 2.769M 2.769M 2.692 2.669 2.651 2.590 2.568

 $CuK\alpha_1 \lambda = 1.540598 A; temp. 25±1 °C$ Internal standard W, a = 3.16524 A Trel d(A) hkl 2θ(°) $\sigma = \pm 1$ 22 0 2 14.18 0 28 0 1 15.99 1 1 2 0 17.13 1 1 0 1 17.27 4 1 1 1 18.68

2 0 0

0 2 1

1 2

2 3

3 1

1 4

1

1

1

32.31

33.25

33.55

41.07

1

19.19

20.18

22.38

1

4

100

2 1 3 0 23.40 15 2 2 23.94 2 0 24.03 15 1 2 1 1 25.09 21 0 3 22 1 25.78 11 1 3 27.54 1 26 2 2 28.00 12 0 4 28.56 3.091M 24 2 3 28.86 3.091M 0 0 2 28.86 0 1 2 29.80 5 3 1 29.86 3 1 4 ٥ 30.18 1L1 0 2 30.50 14 1 1 2 31.35 0 2 16 32.31

3 1 2 2 33.79 4 3 2 0 34.61 2 2 0 34.91 2.514 10 2 1 35.68 2.480 4 0 3 2 36.19 3 3 3 36.24 2.477 0 37.51 2.396 5 1 3 2 2 4

5

3

37.62 2.389 6 1 37.85 2.375 7 2 2 2 0 5 2.318 5 38.81 2.273 8 4 1 0 39.62 2.248 5 1 5 1 40.07 0 4 2.196M 22 41.07

3 0 2 41.36 2.181 5 4 0 2.164 2 1 41.70 3 3 1 2 42.02 2.148 2.137 6 1 4 42.25

3 4 0

2.196M

d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 1$				
2.133	5	4	1	1	42.35
2.083	4	0	6	0	43.41
2.071	11	2	5	1	43.68
2.067	10	3 4	4	1	43.77
2.044	5	4	2	1	44.27
2.033M	9	1	6	0	44.54
2.033M	2	0	1	3	44.54
2.011 1.9845M	3 4	1 1	0 1	3 3	45.05 45.68
1.9845M	4	2	4	2	45.68
1.9747	2	0	6	1	45.92
1.9443	10	Ö	5	2	46.68
1.9322M	3	3	3	2	46.99
1.9322M		1	6	1	46.99
1.9195	4	4	3	1	47.32
1.9122	5	1	2	3	47.51
1.9013	1	1	5	2	47.80
1.8810	1	2	0	3	48.35
1.8597	1	2	1	3	48.94
1.8501	2	4	0	2	49.21
1.8462	1	0	3	3	49.32
1.8285	1 5	5	1	0	49.83
1.8159 1.8008	5 3	2 2	6 2	1 3	50.20 50.65
1.7886	4	3	4	2	51.02
1.7789	3	4	4	1	51.32
1.7547M	í	1	7	ō	52.08
1.7547M	_	5	1	1	52.08
1.7194	2	0	4	3	53.23
1.7147M	4	0	7	1	53.39
1.7147M		2 5	3	3	53.39
1.7040	2		2	1	53.75
1.6967+	3	4	5	0	54.00
1.6967+	,	3	1	3	54.00
1.6904+	6	1	4	3	54.22
1.6904+		5	3	0	54.22
1.6872	5	1	7	1	54.33
1.6665	2	2	7	0	55.06
1.6621	3 1	3	6 2	1 3	55.22 55.62
1.6432	2	2			55.91
1.6362	3 2	3 4	5 5	2 1	56.17
1.6298	3	5	3	1	56.41
1.6177	1	2	6	2	56.87
1.6110	3	2	4	3	57.13

d(Å)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 1$		
1.6084	3	2 7 1	57.23
1.5921	2	4 4 2	57.87
1.5901M	2	5 4 0	57.95
1.5901M		0 5 3	57.95
1.5831	4	3 3 3	58.23
1.5735	1	5 1 2	58.62
1.5633	2	0 8 0	59.04
1.5457M	2	0 7 2	59.78
1.5457M		3 7 0	59.78
1.5413M	3	1 8 0	59.97
1.5413M		5 4 1	59.97
1.5373M	2	5 2 2	60.14
1.5373M	_	4 0 3	60.14
1.5327	3	0 1 4	60.34
1.5243	1	1 7 2	60.71
	•	. , -	
1.5146	2	0 8 1	61.14
1.5117	3	1 1 4	61.27
1.5030	1	2 5 3	61.66
1.5006M	1	3 4 3	61.77
1.5006M		4 6 1	61.77
1.4989M	1	0 2 4	61.85
1.4989M		3 7 1	61.85
1.4945M	1	1 8 1	62.05
1.4945M	_	6 0 1	62.05
1.4866M	2	4 5 2	62.42
1 10664		5 5 0	(0.10
1.4866M		5 5 0	62.42
1.4838	3	6 1 1	62.55
1.4657	3	2 7 2	63.41
1.4641M	3	2 0 4	63.49
1.4641M		0 6 3	63.49
1.4482	3	0 3 4	64.27
1.4445M	2	5 5 1	64.45
1.4445M		6 3 0	64.45
1.4303	2	1 3 4	65.17
1.4255	1	2 2 4	65.42
1.4130M	1	4 7 0	66.07
1.4130M	•	3 5 3	66.07
1.4070	1	6 3 1	66.39
1.3942M	2	0 8 2	67.08
1.3942M	4	3 8 0	67.08
1.354211		3 8 0	01.00

1. Calcium sulfate dihydrate

CAS registry no. 10101-41-4

Sample

The sample was prepared by adding H2SO4 to a water solution of $Ca(NO_3)_2$. The precipitate was filtered out, washed in water, and bottled while moist. The crystals were dried immediately before use, and care was taken to prevent dehydration.

Color

Colorless

Structure

Monoclinic, C2/c (15), Z = 4. The structure was determined by Wooster [1936] and refined by Atoji and Rundle [1958].

Lattice constants of this sample

a = 6.2845(11) A b = 15.2079(15)

c = 5.6776(7)

 $\beta = 114.09(1)^{\circ}$

a/b = 0.4132

c/b = 0.3733

Volume 495.37 A³

Density

(calculated) 2.308 g/cm³

Figure of merit

 $F_{30} = 47.4(0.013,49)$

Reference intensity

 $I/I_{corundum} = 1.83(4)$

Additional patterns

1. PDF card 6-0046 [F. H. Gillery, Pennsylvania

State University, University Park, PA]
2. PDF card 21-816 [Technisch Physische Dienst, Delft, Holland]

References

Atoji, M. and Rundle, R. E. (1958). J. Chem.

Phys. 29, 1306.

Wooster, W. A. (1936). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 94, 375.

 $CuK\alpha_1 \lambda = 1.540598 A; temp. 25±1 °C$ Internal standard Si, a = 5.43088 A rel d(A) hk0 2θ(°) $\sigma = \pm 4$ 7.63 100 2 11.59 4.283 98 0 2 20.72 1 3.799M 17 0 4 0 23.40 3.799M 3 1 0 23.40 28.11 3.172 4 0 29.11 3.065 74 4 1 -2 2 2.873 47 1 31.10 2.789 10 -1 2 32.07 2.732 2 1 3 32.75 2.685M 34 1 5 0 33.35 33.35 2.685M 2 2 0 6 2.597 -1 5 1 34.51 2.534 2 0 6 0 35.39 2.495 -2 0 2 11 35.97 2.476 1 -1 3 2 36.25 2.452 6 0 2 2 36.62 2.406 -2 4 /. 1 37.35 2.291 1L2 4 0 39.29 40.63 2.219 15 1 5 1 2.142 2 0 4 2 42.15 2.086 24 -2 4 2 43.34 2.074M 15 -1 5 2 43.60 2.074M -3 1 1 43.60 44.18 2.048 1 1 2 2.032 1L1 7 0 44.56 4 45.51 1.992 -1 7 1 3 -2 46.22 1.963 6 1 1.8998M 16 0 8 0 47.84 1.8998M 2 6 0 47.84 2 4 1.8795 12 1 48.39 1.8650 -1 48.79 3 1 3 1.8118 13 0 6 2 50.32 1.7995 6 -2 2 3 50.69 1.7844 9 0 8 51.15 1 1.7785 12 -2 6 2 51.33 5 1.7093 1 2 53.57 1 1.6846 3 0 2 3 54.42 55.15 1.6640 6 -2 4 3 2 6 1 1.6456 4 55.82 1.6209+ -2 8 56.75 1.6209+ 1 9 0 56.75 57.54 1.6005 1 -1 9 1 1.5846 2 8 0 58.17 2 0 8 2 60.34 1.5327 1.5209+ 0 10 0 60.86

d(Å)	I ^{rel}	hkl		2θ(°)	
	$\sigma = \pm 4$				
1.5209+		-4 2	2	60.86	
1.5119	1	-2 8	2	61.26	
1.4982	1L	19	1	61.88	
1.4947	1L	- 2 6	3	62.04	
1.4591+	3	-3 7	2	63.73	
1.4591+		0 10	1	63.73	
1.4392	5	-4 4	1	64.72	
1.4354	3	3 7	0	64.91	
1.4278M	2	2 8	1	65.30	
1.4278M		0 6	3	65.30	
1.4178	3	-2 0	4	65.82	
1.4015	2 5	-4 2	3	66.68	
1.3657M	5	2 6	2	68.67	
1.3657M		-2 10	1	68.67	
1.3440M	1	1 11	0	69.94	
1.3440M		2 10	0	69.94	
1.3324	2	-1 11	1	70.64	
1.3262	4	-2 8	3	71.02	
1.3234	4	-4 6	2	71.19	
1.2785	1	0 8	3	74.10	
1.2722	1L	1 11	1	74.53	
1.2674	1L	0 12	0	74.86	
1.2481M	3	4 6	0	76.22	
1.2481M		-4 0	4	76.22	
1.2441	2	2 10	1	76.51	
1.2336	3 2	2 8	2	77.28	
1.2309+	2	-4 2	4	77.48	
1.2309+		0 12	1	77.48	

-1 Calcii	11m S 1	tannate

CAS registry no. 12013-46-6

Sample

The sample was obtained from CERAC, Inc. Milwaukee, WI. The material was heated to 800 °C for one hour. A small amount of SnO₂ was present in the sample.

Color

White

Structure

Orthorhombic, $P2_12_12_1$ (19), Z = 4. The structure of CaSnO₃ was studied by Smith and Welch [1960].

Lattice constants of this sample

a = 5.6615(5) A

b = 7.8825(7)

c = 5.5162(5)

a/b = 0.7182

c/b = 0.6998

Volume 246.17 A³

Density

(calculated) 5.579 g/cm³

Figure of merit

 $F_{30} = 55.5(0.011,51)$

Reference intensity

 $I/I_{corundum} = 6.5(4)$

Additional patterns

- 1. PDF card 3-755 [H. D. Megaw, Philips Lamps Ltd.]
- 2. Coughanour et al. [1955]

References

Coughanour, L. W., Roth, R. S., Marzullo, S., and Sennett, F. E. (1955). J. Res. Nat. Bur.

Stand. $\underline{54}$, No. 3, 149. Smith, A. \overline{J} . and Welch, A. J. E. (1960). Acta. Crystallogr. 13, 653.

CuKo	$\alpha_1 \lambda = 1.540$	598 Å;	te	mp.	25±1 °C
Inte	ernal standa	rd W,	a	= 3	. 16524 A
d(A)	I ^{rel} σ = ±1		hkl		2θ(°)
3.943 3.531 2.830 2.789 2.758	60 2 26 100 23	1 2	2 1 0 2 0	1 0	22.53 25.20 31.59 32.07 32.44

d(A)	I ^{rel} σ = ±1	hkl	2Θ(°)
2.518 2.480 2.398 2.371 2.366	1L 1 1 3 3	2 0 1 1 0 2 2 1 1 0 3 1 1 1 2	35.62 36.19 37.47 37.91 38.00
2.298 2.259 2.188 2.122 2.099	3 3 2 1 1L	2 2 0 0 2 2 1 3 1 2 2 1 1 2 2	39.17 39.87 41.22 42.56 43.06
1.9751 1.9714 1.9256 1.9168 1.8183	32 29 1 1 1L	2 0 2 0 4 0 2 3 0 2 1 2 2 3 1	45.91 46.00 47.16 47.39 50.13
1.8038 1.7853 1.7638 1.7484 1.7076	1L 7 19 4 1	1 3 2 3 0 1 1 4 1 1 0 3 1 1 3	50.56 51.12 51.79 52.28 53.63
1.6266 1.6177 1.6030 1.5984 1.5420M	15 12 15 23 1L	3 2 1 2 4 0 0 4 2 1 2 3 1 4 2	56.53 56.87 57.44 57.62 59.94
1.5420M 1.4766 1.4155 1.3951 1.3788	1 2 2 10	2 0 3 3 3 1 4 0 0 2 4 2 0 0 4	59.94 62.89 65.94 67.03 67.93
1.3393M 1.3393M 1.3362 1.3320 1.3301M	1L 1 2 2	1 0 4 3 3 2 2 5 1 4 2 0 1 5 2	70.22 70.22 70.41 70.66 70.78
1.3301M 1.3231 1.3173 1.3082 1.3021	4 2 2 1	2 3 3 3 4 1 3 0 3 1 4 3 0 2 4	70.78 71.21 71.57 72.15 72.54
1.2592 1.2489 1.2466M 1.2466M	2 7 9	4 0 2 3 2 3 1 6 1 4 3 0 2 0 4	75.43 76.16 76.33 76.33 76.82
1.2324 1.2247 1.2144 1.1994 1.1966	1L 1L 1L 2	2 5 2 2 1 4 2 4 3 4 2 2 0 5 3	77.37 77.95 78.74 79.92 80.14

Calcium Tin Oxide, $CaSnO_3$ - (continued)

d(Å)	1^{rel} $\sigma = \pm 1$	hkl	2Θ(°)
1.1916	1	2 6 0	80.55
1.1861	i	0 6 2	81.00
1.1825	3	2 2 4	81.30
1.1708	1L	1 5 3	82.28
1.1499	2	4 4 0	84.12
1.1358	1L	4 3 2	85.41
1.1300	2	0 4 4	85.95
1.1092	1	5 0 1	87.97
1.0948	2	3 4 3	89.43
1.0939	2	2 6 2	89.53

 Cero 	us n	itrate	hexah	ydrate
--------------------------	------	--------	-------	--------

CAS registry no. 10294-41-4

Sample

The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ.

Color

Colorless

Structure

Triclinic, $P\overline{1}(2)$, Z = 2. The structure of $Ce(NO_3)_3 \cdot 6H_2O$ was studied by Iveronova et al. [1955].

Lattice constants of this sample

a = 8.905(2) Å b = 10.683(3) c = 6.6182(14) $\alpha = 101.18(2)^{\circ}$

 $\beta = 102.19(2)$

 $\gamma = 87.89(2)$

a/b = 0.8336c/b = 0.6195

Volume 603.7 Å³

Density

(calculated 2.389 g/cm³

Figure of merit $F_{30} = 45.8(0.013,51)$

Reference intensity
I/I = 0.44(3)

Additional pattern

1. PDF card 14-3 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Ivernova, V. I., Tarasova, V. P., Zolina,
Z. K., Markhasin, G. V., and Sukhodereva,
I. M. (1955). Zh. Fiz. Khim. 29, 314.

	$CuK\alpha_1 \lambda = 1.540598 \text{ Å}; temp. 25\pm1 °C$							
	Internal standard Si, a = 5.43088 Å							
d(A	4)	I ^{rel}		hkl		2θ(°)		
		$\sigma = \pm 5$						
8.70	-	21	_	0	_	10.16		
6.71		85	_	1		13.19		
6.37		60	0	_	1	13.90		
5.96		76	0	-1		14.85		
5.73	3	54	-1	0	1	15.44		

0	rol		
d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 5$		
5.437	42	-1 -1 1	16.29
	42		
5.245			16.89
5.024	44	0 1 1	17.64
4.701	100	-1 1 1	18.86
4.487M	39	0 -2 1	19.77
4.487M		1 2 0	19.77
4.358	46	2 0 0	20.36
4.017	22	2 1 0	22.11
4.001	27	-2 0 1	22.20
3.890	14	-2 -1 1	22.84
3.770	19	1 -2 1	23.58
3.711	6	0 2 1	23.96
3.576	4	-1 2 1	24.88
	2	0 3 0	25.48
3.493			26.39
3.375	28	-2 -2 1	20.39
3.341M	21	0 -3 1	26.66
3.341M		2 2 0	26.66
3.247M	50	- 1 3 0	27.45
3.247M		-1 -1 2	27.45
3.237M	33	1 3 0	27.53
3.237M		-1 -3 1	27.53
3.213	37	0 -1 2	27.74
3.175	15	0 0 2	28.08
3.048	14	2 1 1	29.28
	25	1 -3 1	29.63
3.013M	23	1 -3 1	29.03
3.013M		-2 2 1	29.63
3.002	28	-1 -2 2	29.74
2.979	29	0 -2 2	29.97
2.913	45	-1 1 2	30.67
2.892M	47	-2 -1 2	30.89
2.05211	7,		30.03
2.892M		0 1 2	30.89
2.875	11	- 3 0 1	31.08
2.864	11	-2 0 2	31.20
2.839	31	0 3 1	31.49
2.832M	28	-3 -1 1	31.57
2.832M		1 -1 2	31.57
2.802M	11	1 0 2	31.91
2.802M	11	-3 1 0	31.91
	15		
2.794M	15	-2 -3 1	32.01
2.794M		3 1 0	32.01
2.715+	21	-3 1 1	32.96
2 7151		_2 _2 2	32.96
2.715+	7.0	-2 -2 2	
2.663M	19	1 -2 2	33.63
2.663M	0.5	2 2 1	33.63
2.651	35	-2 1 2	33.78
2.620	28	0 4 0	34.19
2.611M	30	-3 -2 1	34.32
2.611M		0 -3 2	34.32
2.550	19	-1 -4 1	35.16
2.542	14	-3 2 0	35.28

d(Å)	I ^{rel}	hkl	2Θ(°)
	$\sigma = \pm 5$		
2.533	18	3 2 0	35.41
2.527M	24	-1 2 2	35.49
2.527M	24	2 -3 1	35.49
2.490	18	-2 3 1 -2 3 1	36.04
2.452	20	3 0 1	36.62
2.432	20	3 0 1	30.02
2.440	15	1 -4 1	36.80
2.424	13	-2 -3 2	37.05
2.405	13	-3 0 2	37.36
2.393	5	1 -3 2	37.56
2.359	6	2 -1 2	38.12
2.352	12	-2 2 2	38.24
2.316M	23	-2 -4 1	38.85
2.316M		-3 -3 1	38.85
2.313M	26	-3 -2 2	38.91
2.313M		1 2 2	38.91
2.291	32	3 -2 1	39.30
2.280	31	2 3 1	39.49
2.265	14	2 -2 2	39.77
2.249M	28	-1 -4 2	40.06
2.249M	20	-2 4 0	40.06
2.249n		-2 4 0	40.00
2.243M	24	-1 4 1	40.17
2.243M		0 -4 2	40.17
2.227	5	3 3 0	40.47
2.204M	19	-1 -1 3	40.91
2.204M		-4 0 1	40.91
2.184	13	-4 -1 1	41.31
2.159+	27	1 4 1	41.80
2.159+		3 2 1	41.80
2.153M	27	0 3 2	41.92
2.153M	۷,	-1 -2 3	41.92
2.137	22	- 3 3 1	42.26
2.129M	26	-4 1 1	42.43
2.129M		4 1 0	42.43
2.116M	35	0 0 3	42.70
2.116M		0 -5 1	42.70
2.107	28	0 -2 3	42.89
2.088	20	2 -3 2	43.29
2.081	20	- 2 0 3	43.44
2.077M	21	-3 2 2	43.53
2.077M		-4 -2 1	43.53
2 052	11	-2 2 2	44.00
2.053	11	-2 3 2	44.08
2.039	22	-1 5 0	44.39
2.035M	17	1 5 0	44.49
2.035M		2 2 2	44.49
2.024+	6	1 -5 1	44.74
2.024+		1 3 2	44.74
2.012	3	-4 2 0	45.01
1.999	19	- 4 0 2	45.33
1.987M	8	-4 2 1	45.63
1.987M		0 -3 3	45.63
1.973	10	-2 1 3	45.97
		_ · · J	43.71

CAS registry no. 12006-79-0

Sample

The sample was obtained from Cerac, Menomonee Falls, WI.

Color

Metallic gray

Structure

Orthorhombic, Cmcm (63), Z = 4. The structure was determined by Kiessling [1949].

Lattice constants of this sample

a = 2.9663(4) A

b = 7.8666(10)

c = 2.9322(5)

a/b = 0.3771

c/b = 0.3727

Volume 68.422 A³

Density

(calculated) 6.097 g/cm³

Figure of merit

 $F_{19} = 62.9(0.013,24)$

Reference intensity

 $I/I_{corundum} = 1.22(8)$

Polymorphism

Papesch et al., [1973] also observed a tetragonal low temperature form of CrB with 52-56 atom % B.

Additional pattern

 PDF card 9-361 [Plessey Co. Ltd., Caswell, Towcester, Northants, England].

References

Kiessling, R. (1949). Acta Chem. Scand. 3,

595.

Papesch, G., Nowotny, H., and Benesovsky, F. (1973). Monatsh. Chem. 104, 933.

 $CuK\alpha_1 \lambda = 1.540598 A$; temp. 25±1 °C Internal standard W, a = 3.16524 A Trel 2θ(°) d(A) hkl $\sigma = \pm 6$ 3.936 5 2 0 22.57 0 2.776 38 1 1 0 32.22 38.25 2.351 74 0 2 1 2.016 100 44.92 1 1 1 1.965M 79 0 4 46.15 0 1.965M 1 3 0 46.15 1.6322 32 1 3 56.32 1 1.4829 14 2 0 62.59 1.4663 17 0 0 63.38 2 2 1.3881 1L0 67.41 1.3111 6 0 6 0 71.96 1.2961 12 1 2 72.93 1 75.69 1.2555 34 1 5 1 30 2 75.78 1.2543 1 1.1970 9 0 6 80.11 2 4 0 81.17 1.1840 12 0 4 81.91 1.1752M 30 2 1.1752M 1 3 2 81.91 89.10 13 2 1.0980 4 1 1.0509 7 0 94.27 13 1 1.0427 14 2 0 2 95.25

- 1. Chromic chloride
- 2. Chromium trichloride

CAS registry no. 10025-73-7

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, N.J.

Deep purple red.

Structure

Monoclinic, A2/m (12), Z = 4, pseudohexagonal. The structure was determined by Morosin and Narath [1964]. This form exists at room temperature.

Lattice constants of this sample

6.123(2) A a = b = 10.311(3)

c = 5.956(5)

 $\beta = 108.64(5)^{\circ}$

a/b = 0.5938c/b = 0.5776

Volume 356.3 A³

Density

(calculated) 2.952 g/cm³

Figures of merit

 $F_{19} = 13.2 (0.018,80)$

 $M_{19} = 16.0$

Reference intensity

 $I/I_{corundum} = 4.5(2)$

Polymorphism

There is a hexagonal form found by Wooster [1930] and a low temperature form also found by Morosin and Narath [1964].

Additional pattern

1. PDF card 6-535 [Handy and Gregory,

References

Handy, L. L. and Gregory, N. W. (1952).

J. Am. Chem. Soc. <u>74</u>, 891. Morosin, B. and Narath, A. (1964). J.

Chem. Phys. 40, 1958.

Wooster, N. (1930). Z. Kristallogr.

Kristallgeometrie Kristallphys.

Kristallchem. 74, 363.

CuKa ₁	λ = 1.540598	Å;	tem	р.	25±1 °C
Inte	rnal standard	w,	a =	3.	16524 A
d(A)	I ^{rel}		hk	.e	2θ(°)
	$\sigma = \pm 3$				
5.80	100	1	0	0	15.27
5.154	1	0	2	0	17.19
3.849	1L	1	2	0	23.09
2.936M	2	0	3	1	30.42
2.936M		-1	0	2	30.42
2.901	14	2	0	0	30.80
2.816	1	0	0	2	31.75
2.577	1	0	4	0	34.78
2.475	2	0	2	2	36.27
2.460	6	1	3	1	36.49
1.934	1	3	0	0	46.94
1.911	1	2	3	1	47.54
1.754	3	-3	3	1	52.09
1.720	3	-1	_	3	53.21
1.6511M	1	3	1	1	55.62
1.6511M		0	3	3	55.62
1.6478M	1	1	6	0	55.74
1.5039	1L	3	3	1	61.62
1.4498M	6	-3	5	1	64.19
1.4498M		4	0	0	64.19
1.4115M	1	0	0	4	66.15
1.4115M		-2	2	4	66.15
1.3954M	1	4	2	0	67.01
1.3954M		-4	3	1	67.01

Sample

The sample was obtained from the City Chemical Corp., New York, N. Y. It was labelled iron chromite ($FeCr_2O_4$). The approximate composition was determined by the relation of the cell parameters to those of Fe_2O_3 and Cr_2O_3 . This is a solid solution between hematite (Fe_2O_3) and chromic oxide (Cr_2O_3).

Color Dark brown

Structure

Hexagonal, R3c (167), Z = 6. The structure of Cr_2O_3 was determined by Wretblad [1930]. The structure of hematite (Fe_2O_3) was determined by Davey [1923].

Lattice constants of this sample

 $a = 4.9965(6) \stackrel{\circ}{A}$ c = 13.621(3)

c/a = 2.7261

Volume 0 294.49 Å³

Density (calculated) 5.233 g/cm³

Figure of merit $F_{20} = 51.0(0.014,29)$

Reference intensity
I/I = 2.11(8)

References

Davey, W. P. (1923). Phys. Rev. <u>21</u>, 716. Wretblad, P. E. (1930). Z. Anorg. Chem. <u>189</u>, 329.

CuK α_1	$\lambda = 1.54059$	8 Å; t	emp	2.	5±1 °C			
Inter	Internal standard Si, a = 5.43088 Å							
d(A)	I ^{rel}	hk.	e		2θ(°)			
	$\sigma = \pm 3$							
3.654	43	0	1	2	24.34			
2.676	100	1	Ô		33.46			
2.499	73	1	1		35.90			
2.270	4	0	0	6	39.67			
2.189	27	1	1	3	41.21			
2.063	4	2	0	2	43.85			
1.8268	33	0	2	4	49.88			
1.6801	66	1	1	6	54.58			
1.5896	5	1	2	2	57.97			
1.5849	6	0	1	8	58.16			
1.4738	23	2	1	4	63.02			
1.4421	25	3	0	0	64.57			
1.3380	1	2	0	_	70.30			
1.2988	12	1	0	10	72.75			
1.2488	6	2	2	0	76.17			
1.2179	3	3	0	-	78.47			
1.1794	2	1	2		81.56			
1.1528	4	0	2		83.86			
1.1319	7	1	3	-	85.77			
1.0945	7	2	2	6	89.46			

1. Chromic acid anhydride

2. Chromium trioxide

CAS registry no. 1333-82-0

Sample

The sample was from J. T. Baker Chemical Co., Phillipsburg, NJ.

Color

Dark reddish brown.

Structure

Orthorhombic, Ama2 (40), Z = 4. The structure of CrO_3 was studied by Bräkken [1931] and refined by Byström and Wilhelmi [1950].

Lattice constants of this sample

a = 5.7494(15) Å

b = 8.556(2)

c = 4.7961(11)

a/b = 0.6720

c/b = 0.5606

Volume 0 235.93 Å³

Density

(calculated) 2.815 g/cm³

Figure of merit

 $F_{30} = 56.8(0.016,32)$

Reference intensity

 $I/I_{corundum} = 1.41(13)$

Additional pattern

1. PDF card 9-47 [Byström and Wilhelmi, 1950]

References

Bräkken, H. (1931). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 78, 484.

Byström, A. and Wilhelmi, K.-A. (1950). Acta Chem. Scand., 4, 1131.

CuK α_1 λ = 1.540598 $\overset{\circ}{A}$; temp. 25±1 °C Internal standard Si, a = 5.43088 $\overset{\circ}{A}$

	Interna		51	, a	=	5.43088 A
	d(Å)	I ^{rel}		hkl		2θ(°)
		$\sigma = \pm 3$				
	4.279	19	0	2	0	20.74
	4.186	90	0	1	1	21.21
	3.435	100	1	2	0	25.92
	3.383	64	1	1	1	26.32
	2.874	44	2	0	0	31.09
	2.454	4	0	3	1	36.59
ľ	2.398	17	0	0	2	37.48
1	2.370	18	2	1	1	37.94
ı	2.255	18	1	3	1	39.94
	2.139	2	0	4	0	42.21
ĺ	2.091	2	0	2	2	43.23
ł	2.006	8	1	4	0	45.17
١	1.966	10	1	2	2	46.14
	1.866	2	2	3	1	48.77
	1.842	5	2	ō	2	49.43
۱	1.749	10	3	2	0	52.26
ı	1.743	11	3	1	1	52.44
ı	1.7168	5	2	4	ō	53.32
I	1.6921	3	2	2	2	54.16
ł	1.6112	3	0	5	1	57.12
l	1.0112	3	U	J	1	37.12
ı	1.5954	2	0	4	2	57.74
ı	1.5706	3	0	1	3	58.74
ı	1.5512	1	1	5	1	59.55
ı	1.5380	2	1	4	2	60.11
l	1.5159	4	1	1	3	61.08
	1.5097	4	3	3	1	61.36
1	1.4366	6	4	0	0	64.85
1	1.4262	3	Ó	6	0	65.38
١	1.4124	4	3	2	2	66.10
ı	1.4062	6	2	5	1	66.43
				,	_	
	1.3956	3	2	4	2	67.00
	1.3795	5	2	1	3	67.89
	1.3555	6	1	3	3	69.26
	1.2773	2	2	6	0	74.18
	L					

1. (9S)-Cinchonan-9-ol

CAS registry no.

118-10-5

Sample

The sample was obtained from the Eastman Kodak Co., Rochester, N. Y. It was recrystallized from ethanol.

Color

Colorless

Structure

Monoclinic, $P2_1/*$, Z = 2. The unit cell and space group were determined by Paretzkin [1956].

Lattice constants of this sample

a = 11.091(2) A

b = 7.200(3)

c = 10.774(2)

 $\beta = 107.95(2)^{\circ}$

a/b = 1.5404

c/b = 1.4964

Volume

818.48 A³

Density

(calculated) 1.195 g/cm³

Figure of merit

 $F_{30} = 46.6(0.012,52)$

Additional pattern

 PDF card 7-526 [Paretzkin, Polytechnic Institute of Brooklyn].

References

Paretzkin, B. (1956). Acta Crystallogr. 9, 290.

	$\lambda = 1.540598$			_	0
	rnal standard	Si,	a	= 5	.43088 A
d(A)	I ^{rel}		hk	l	2θ(°)
	$\sigma = \pm 2$				
10.53	100	1	0	0	8.39
8.84	1L	-1	0	1	10.00
6.43 5.898	2 10	1	0	1 1	13.76 15.01
5.583	10	-1	1	1	15.86
0010	_	_	_		
5.417	4	-2	0	1	16.35
5.301	20 24	-1 2	0	2	16.71 16.77
5.282 5.119	19	0	0	2	17.31
4.795	4	1	1	1	18.49
4.423 4.327	3 5	-2 -2	0	2	20.06 20.51
4.251	7	2	1	0	20.88
4.197	21	2	0	1	21.15
4.135	10	1	0	2	21.47
3.770	2	-2	1	2	23.58
3.623	10	2	1	1	24.55
3.586M	3	-1	0	3	24.81
3.586M	1.7	1	1	2	24.81
3.437	1L	-3	0	2	25.90
3.409	1 L	1	2	0	26.12
3.288	1L	-3	1	1	27.10
3.213M 3.213M	1	2 -1	0	2	27.74 27.74
3.161	1	3	1	0	28.21
		_		_	00.76
3.102 3.089	1 1	-3 0	1	2	28.76 28.88
3.049	1L	3	0	1	29.27
2.936	2	2	1	2	30.42
2.809	2	3	1	1	31.83
2.770	1L	-4	0	1	32.29
2.761	1 L	1	1	3	32.40
2.726	1L	-3	1	3	32.83
2.708 2.687	1L 1	-4 -1	0	2	33.05 33.32
	•	•	3	•	
2.638	1L	4	0	0	33.96
2.556 2.541	1 1	3 -1	0	2	35.08 35.29
2.541 2.534M	1	-4	1	2	35.39
2.534M	-	2	ō	3	35.39
2.480	1L	0	2	3	36.19
2.460 2.464M	1L	-2	2	3	36.43
2.464M		-3	0	4	36.43
2.408	1	3	1	2	37.31
2.388	1L	2	1	3	37.63

Cinchonine, $C_{19}H_{22}N_2O$ - (continued)

d(A)	I^{rel} $\sigma = \pm 2$		h	kl	2θ(°)
	0 = ±2				
2.328	1L	3	2	1	38.64
2.279	1L	-3	2	3	39.51
2.263	1L	4	1	1	39.81
2.218	1L	1	1	4	40.65
2.208	1L	-4	0	4	40.83
2.165	1L	-4	2	2	41.69
2.140	1 L	-1	0	5	42.19
2.111+	1	5	0	0	42.80
2.111+		- 5	0	3	42.80
2.082	1L	2	3	1	43.43
2.069M	1L	-3	0	5	43.72
2.069M		2	0	4	43.72
2.051+	1L	-1	1	5	44.12
2.051+		0	0	5	44.12
2.024M	1L	5	1	0	44.74
2.024M		- 5	1	3	44.74
2.012M	1L	4	1	2	45.02
2.012M		-3	3	1	45.02
1.9898	1L	-3	1	5	45.55
1.9570M	1L	-2	3	3	46.36
1.9570M		1	2	4	46.36
1.9514M	1L	5	0	1	46.50
1.9514M		- 5	0	4	46.50
1.8846M	1L	5	1	1	48.25
1.8846M		-4	2	4	48.25
1.8795M	1L	- 5	2	1	48.39
1.8795M		- 5	2	2	48.39
1.8389	1L	-1	2	5	49.53
1.8115	1L	4	2	2	50.33
1.8065	1L	-6	0	3	50.48
1.7932	1L	2	2	4	50.88

1. 4-[3-(2-Chlorothioxanthen-9-ylidene)propyl] -1-piperazineethanol dihydrate

Sample

The sample was supplied by J. Rodgers, University of Adelaide, Adelaide, South Australia. Chemical analysis gave weight percents indicating that the dihydrate is the most probable formula.

Color

Colorless

Structure

Triclinic, P^* , Z = 2. The unit cell was measured on a single crystal diffractometer by V. Himes at NBS (priv. comm.). The value of Z was assumed from the measured density.

Lattice constants of this sample

a = 7.773(3) A

b = 21.939(11)

c = 6.518(4)

 $\alpha = 91.60(5)^{\circ}$

 $\beta = 93.06(4)$

y = 90.06(4)

a/b = 0.3543

c/b = 0.2971

Volume 0 1110. A³

Density

(calculated) 1.308 g/cm³ (measured) 1.34 g/cm³

Figure of merit $F_{30} = 23.0(0.016,80)$

Reference intensity
I/I = 1.01(5)

Polymorphism

The form described here is the inactive isomer having no neuroleptic activity. An active isomer also exists.

Cu K a 1	$\lambda = 1.54059$	98 Å; t	emp.	25±1 °C
	rnal standard	d Ag, a	= 4	.08651 Å
d(A)	I ^{rel}	h	kl	2θ(°)
	$\sigma = \pm 6$			
22.02	100	0 1	0	4.01
11.00 7.32+	15 38	0 2	0	8.03 12.08
7.32+	36	1 1	0	12.08
6.29	39	0 -1	1	14.07
5.65	11	0 -2	1	15.66
5.48	4	0 4		16.15
5.34 5.122	16 7	-1 3 -1 0		16.59 17.30
5.012	13	-1 -1	1	17.68
			_	
4.792 4.721	43 33	0 3	1	18.50 18.78
4.609	55	-1 2		19.24
4.405	3	1 2		20.14
4.243	12	-1 -3	1	20.92
4.135	4	0 4	1	21.47
3.882	20	2 0		22.89
3.824+	18	-2 1		23.24
3.824+ 3.703	12	-1 5 -1 4		23.24 24.01
			_	
3.658+ 3.658+	45	-2 2 2 2		24.31 24.31
3.597	7	1 4		24.73
3.431	32	-2 3		25.95
3.371M	44	-2 1	1	26.42
3.371M		-1 -5	1	26.42
3.294	17	1 -5		27.05
3.269 3.248M	21	-2 -2 0 0	_	27.26 27.44
3.248M	19	-2 2		27.44
	15			27.67
3.221M 3.221M	15	0 - 6 1 5		27.67
3.167M	11	-2 4		28.15
3.167M		2 4		28.15
3.136M	10	2 -2	1	28.44
3.136M		0 7		28.44
3.094	4	0 2 2 -3		28.83 29.83
2.993 2.960	8 6	2 -3 2 3		30.17
2.941M	5	1 0		30.37
2.941M		0 3		30.37
2.795M	4	-1 3		32.00
2.795M 2.780	3	0 7 2 4		32.00 32.17
2.740	1	0 8		32.66
•				

Clopenthixol Hydrate, $C_{22}H_{25}ClN_2OS \cdot 2H_2O$ - (continued)

d(Å)	I^{rel} $\sigma = \pm 6$	hkl	2θ(°)
2.678	6	-2 5 1	33.43
2.643	3	-1 4 2	33.89
2.516	1	3 2 0	35.66
2.449M	1	2 -6 1	36.66
2.449M		-3 0 1	36.66
2.440+	1	-3 3 0	36.81
2.440+		-2 7 0	36.81
2.317M	5	-1 6 2	38.84
2.317M		-3 3 1	38.84
2.299M	5	-2 4 2	39.15
2.299M		3 2 1	39.15
2.237	4	2 8 0	40.29

Syn	onym

1. Copper phosphate hydrate

CAS registry no. 1318-84-9

Sample

The sample was prepared at NBS by D. Misra by reaction of hydroxyapatite with $Cu(N0_3)_2$ solution. The material was dried at 55 °C.

Color

Light yellow green

Structure

Orthorhombic, Pnnm (58), Z = 4. The lattice constants of libethenite were determined by Strunz [1936]. The structure was determined by Heritsch [1940].

Lattice constants of this sample

a = 8.0678(10) A b = 8.4100(15) c = 5.8896(7)

a/b = 0.9593c/b = 0.7003

Volume . 399.61 A³

Density

(calculated) 3.974 g/cm³

Figure of merit $F_{30} = 53.6(0.012,45)$

Reference intensity
I/I
corundum = 1.13(4)

Additional patterns

- 1. PDF card 8-107 [Strunz, 1936]
- 2. PPF card 1-274 [Hanawalt et al., 1938]

References

Henawalt, J. D., Rinn, H. W., and Frevel,
L. K. (1938). Ind. Eng. Chem. Anal. Ed.
10, 457.

Heritsch, H. (1940). Z. Kristallogr.
 Kristallogeometrie Kristallphys. Kristallchem. 102, 1.

Strunz, H. (1936). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 94, 63.

	Inter	nal standard	d Ag,	a = 4	.08651 A	
	d(Å)	I ^{rel}	1	hkl	2θ(°)	
ļ		$\sigma = \pm 3$				
	5.813 4.818	93 100	1 0	1 0 1 1	15.23 18.40	
	4.751 4.137 3.729	68 6 42	1 1 1	0 1 1 1 2 0	18.66 21.46 23.84	
	3.638 2.946 2.912 2.647 2.627	15 18 72 43 61	2 0 2 1 1	1 0 0 2 2 0 3 0 1 2	24.45 30.32 30.68 33.84 34.10	
	2.610 2.561 2.532 2.446 2.414M	19 25 10 11 26	2 3 0 3 1	2 1 1 0 3 1 0 1 3 1	34.33 35.01 35.43 36.71 37.21	
	2.414M 2.377 2.348 2.312 2.288	21 10 21 4	0 2 3 1 2	2 2 0 2 1 1 2 2 1 2	37.21 37.81 38.30 38.93 39.34	
	2.265 2.071 2.017 1.9682 1.9411	3 6 1 3 3	3 2 4 1 3	2 0 2 2 0 0 3 2 3 0	39.77 43.67 44.91 46.08 46.76	
	1.9326 1.9237 1.9077 1.8607M 1.8607M	6 6 5 5	3 1 1 4 1	1 2 4 1 0 3 1 1 1 3	46.98 47.21 47.63 48.91 48.91	
	1.8196 1.8139 1.7955 1.7370M 1.7370M	2 2 2 2	4 2 3 4 1	2 0 3 2 2 2 2 1 2 3	50.09 50.26 50.81 52.65 52.65	
	1.7111 1.6643 1.6462 1.6330 1.6277	11 7 3 2 3	0 4 1 4 2	4 2 0 2 5 0 1 2 2 3	53.51 55.14 55.80 56.29 56.49	
	1.6201 1.5951 1.5849+ 1.5849+ 1.5767M	10 4 9 7	3 3 3 5 4	3 2 4 1 0 3 1 0 3 1	56.78 57.75 58.16 58.16 58.49	

 $CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$

Copper Hydroxide Phosphate (Libethenite), $\mathrm{Cu_2}(\mathrm{OH})\mathrm{PO_4}$ - (continued)

	d(A)	I ^{rel}		hk	Q	2θ(°)
l		$\sigma = \pm 3$				
	1.5767M		1	3	3	58.49
	1.5590	4	3	1	3	59.22
	1.5472	9	4	2	2	59.72
	1.5302	3	5	1	1	60.45
	1.5063	3	5	2	0	61.51
	1.4724	7	0	0	4	63.09
1	1.4554	6	4	4	0	63.91
	1.4276	3	1	1	4	65.31
1						

p c didta
Synonyms 1. β-L-glutaminic acid 2. β-L-2-aminopentanedioic acid
CAS registry no. 56-86-0
Sample The sample was obtained from Sigma Chemical Co., St. Louis, MO.
Color Colorless
Structure Orthorhombic, $P2_12_12_1$ (19), $Z = 8$. The structure was determined by Hirokawa [1955].
Lattice constants of this sample a = 6.9651(15) A b = 17.308(3) c = 5.1690(14)
a/b = 0.4024 c/b = 0.2986
Volume 623.12 A ³
Density (calculated) 1.568 g/cm ³
Figure of merit $F_{30} = 48.3(0.016,39)$
Reference intensity I/I corundum = 0.65(3)
Polymorphism There is also an orthorhombic α-form found by Bernal [1931].
References Bernal, J. D. (1931). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 78, 363. Hirokawa, S. (1955). Acta Crystallogr. 8,
637.

CuKa ₁	$\lambda = 1.540$	598	٥ A;	temp.	25±1 °C
	nal standa	rd	Si,	a = 5	.43088 Å
d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 3$				
8.65	34	0	2	0	10.22
6.46	10	1	1	0	13.69
4.960	9	0	1	1	17.87
4.445M 4.445M	28	1	3	0	19.96 19.96
4.44311		U	2	1	19.90
4.323	40	0	4	0	20.53
4.155	100	1	0	1	21.37
4.042 3.854	75 13	1 0	1 3	1	21.97 23.06
3.746	24	1	2	1	23.73
	- 0		,	•	01 -0
3.678 3.482	10 64	1 2	4 0	0	24.18 25.56
3.415	43	2	1	0	26.07
3.372	6	1	3	1	26.41
3.320	3	0	4	1	26.83
3.232	18	2	2	0	27.58
3.101	10	1	5	0	28.77
2.983	26	2	3	0	29.93
2.887M 2.887M	70	2	0 6	1	30.95 30.95
2.00/11		U	U	U	30.73
2.849	12	2	1	1	31.37
2.741	6 12	2	2 4	1	32.64 33.00
2.712 2.664	31	1	6	0	33.62
2.583M	12	0	0	2	34.70
2.583M		2	3	1	34.70
2.520	29	0	6	1	35.60
2.475	8	0	2	2	36.27
2.455	4	2	5	0	36.57
2.402	3	2	4	1	37.41
2.398	3	1	1	2	37.47
2.367	12	1	6	1	37.99
2.358 2.330	5 8	0	3 7	2	38.13 38.61
2.330	2	3	1	0	39.09
2.231 2.154	14	0 3	7 3	1	40.39 41.91
2.134	5 6	1	3 7	1	42.50
2.102	8	3	1	1	42.99
2.057	6	3	2	1	43.98

 β -L-Glutamic Acid, $\mathrm{C_5H_9NO_4}$ - (continued)

d(Å)	I ^{rel}		hkl		2θ(°)
	σ =	±3			
2.040	8	2	6	1	44.38
2.0171		2	2	2	44.91
2.017	1	2	7	0	44.91
1.995	3	0	8	1	45.43
1.988	4	3	3	1	45.59
			_	_	
1.953	2	2	3	2	46.47
1.924	3	0	6	2	47.19
1.919	3 4	1	8	1	47.32
1.902	4	3 2	4 7	1	47.79 48.44
1.878	4	2	′	1	40.44
1.855	M 5	1	6	2	49.07
1.855	M	1	9	0	49.07
1.838	1	2	8	0	49.55
1.806	1	3	5	1	50.50
1.803	1	0	9	1	50.59
1 7//	2	,	^	,	FO /O
1.744	3	1 4	9	1	52.42
1.733	3	•	1 7	0	52.77 52.90
1.729	5 4	1 3	1	2	52.90
1.706		3	6	1	53.68
1.700	5	3	Ü	1	33.00
1.706	M .	4	2	0	53.68
1.692		3	7	0	54.16
1.683	8M 3	2	6	2	54.45
1.683		2	9	0	54.45
1.664	0 3	1	1	3	55.15
1.658	8 3	0	8	2	55.34
1.650		0	3	3	55.64
1.650		4	0	1	55.64
1.642		4	1	1	55.95
1.642	_	1	2	3	55.95
		_		Ī	
1.598	2 3	1	10	1	57.63
1.586	4 2	4	3	1	58.10
1.542		0	9	2	59.92
1.542		0	5	3	59.92
1.521	1 2	2	2	3	60.85
1.505	5M 1	1	5	3	61.55
1.505		0	11	1	61.55
1.505	J.1	U	11	1	01.55
L					

1. ∝-Aminoacetic acid

CAS registry no. 56-40-6

Sample

The sample from Fisher Scientific Co., Fair Lawn, NJ. was recrystallized from a mixture of water and methanol to which a small amount of ether was added.

Color Colorless

Structure

Monoclinic, $P2_1/n$ (14), Z = 4. The structure was determined by Albrecht and Corey [1939] and refined by Marsh [1957].

Lattice constants of this sample

a = 5.4621(12) Å b = 11.966(3) c = 5.1077(11) β = 111.72(2)°

a/b = 0.4565c/b = 0.4269

Volume 310.14 A³

Density (calculated) -.608 g/cm³

Figure of merit $F_{30} = 40.5 (0.014,51)$

Reference intensity $I/I_{corundum} = 4.6(3)$

Polymorphism

 α -glycine, the most stable form, is obtained from water at room temperature and below, while β - and γ -glycine are obtained (together with α -glycine) from mixtures of water with acetic acid at higher temperatures [Hubig, 1958].

Additional pattern

1. PDF card 7-718 [Hanawalt et al., 1938]

References

Albrecht, G. and Corey, R. B. (1939). J. Am. Chem. Soc. 61, 1087.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Hubig, W. Z. (1958). Z. Naturforsch. B13, 633.

Marsh, R. E. (1957). Acta Crystallogr. 10, 814.

 $CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$ Internal standard W, a = 3.16524 A Trel d(A) hkl 2θ(°) $\sigma = \pm 2$ 5.98 9 0 2 0 14.80 9 1 1 18.99 4.670 4.410 4 0 1 20.12 3.874 1L 1 2 22.94 3.719 15 0 2 1 23.91 25.26 -1 2 3.523 1L 1 3 0 28.46 3.134 6 3.053 10 0 3 1 29.23 2.990 100 0 4 0 29.86 2.874 1 1 1 1 31.09 33.75 2.654 1L 1 2 1 0 4 35.42 2.532 7 1 2 1 0 2.481 36.18 2 2.453 4 -2 2 1 36.60 2.374 1L0 0 37.87 2 2 2.336 1 0 38.50 2.327 1 0 1 2 38.67 -2 40.43 2.229 3 1L 1 2 40.90 0 2 2.205 1 2.166 1 1 5 0 41.67 42.14 2.143M 1 -1 3 2 42.14 2.143M 2 3 0 1 4 1 42.94 2.105 -2 2 2 44.13 2.051 1L2.039 0 44.40 1 2,000 1 -2 4 1 45.30 1.994 0 6 0 45.46 1 4 46.91 1.935M **-**1 2 2 4 46.91 1.935M 1.915 -2 3 47.44 48.54 1 1 1.874 1L2 2 48.97 1 1.859M 1L 0 4 2 48.97 1.859M 1L0 6 1 49.54 1.839 1.808 1L 1 50.43 1.7998 1L -3 1 1 50.68 **-**2 5 1 51.02 1.7886 1L2 3 52.02 1.7566 1L1 1L **-**1 5 2 52.48 1.7422M -3 2 1 52.48 1.7422M 1L 1 3 2 53.45 1.7129 -1 0 1.6988 1L 3 53.93 -1 1 3 54.51 1.6821 1L**-**3 3 1.6557 1L1 55.45

1. Guanidine Hydrochloride

CAS registry no.

50-01-1

Sample

The sample was obtained from Mallinckrodt Chemical Works, St. Louis, MO.

Color

Colorless

Structure

Orthorhombic, Pbca(61), Z = 8. The structure was determined by Haas et al. [1965].

Lattice constants of this sample

a = 9.192(2) A

b = 13.037(4)c = 7.774(2)

a/b = 0.7051

c/b = 0.5963

Volume o 963.6 A³

Density

(calculated) 1.362 g/cm³

Figure of merit

 $F_{30} = 36.0(0.015,55)$

Reference intensity

 $I/I_{corundum} = 0.77(2)$

Additional pattern

1. PDF card 3-387 [Theilacker, 1931].

References

Haas, D. J., Harris, D. R., and Mills, H. H.

(1965). Acta Crystallogr. <u>19</u>, 309.

Theilacker, W. (1931). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem.

<u>76</u>, 203.

	CuKa ₁	$\lambda = 1.540598$	o A;	te	mp.	25±1 °C	
	Inte	ernal standard	W,	a	= 3.	16524 A	
-	d(A)	I ^{rel}		h	kl	2θ(°)	
		$\sigma = \pm 1$					
	4.996	3	0	2	1	17.74	
	4.591	13	2	0	0	19.32	
	4.386	88	1	2	1	20.23	
	4.329 3.884	16 9	2	1	0	20.50 22.88	
l			_	Ů	_		
I	3.787	46	2	1	1	23.47	
	3.583 3.448	50 96	1 1	0 1	2	24.83 25.82	
	3.381	54	2	2	1	26.34	
	3.258	29	0	4	0	27.35	
1	2.968	100	2	0	2	30.08	
1	2.927	12	2	3	1	30.52	
1	2.894	5	2	1	2	30.87	
1	2.783	31	3	1	1	32.14	
	2.763	41	1	3	2	32.38	
	2.659	75	2	4	0	33.68	
1	2.497	35	0	4	2	35.93	
	2.449M	10	2	3	2	36.66	
1	2.449M 2.407M	11	1	1 2	3	36.66 37.33	
1	2.407M	4	3	0	2	37.33	
1	2.384 2.368	6 2	3	3	1 2	37.70 37.97	
	2.297	13	4	0	0	39.18	
	2.264	5	4	1	0	39.78	
-	2.223	2	2	1	3	40.54	
-	2.195	9	2	4	2	41.08	
1	2.173M	4	4	1	1	41.52	
	2.173M	4	0	6	0	41.52	
	2.164	4	1	3	3	41.70	
	2.134	3	2	2	3	42.31	
	2.106M	11	1	5	2	42.91	
1	2.106M 2.088	9	3 4	3	2 1	42.91 43.29	
1	2.040	4	1	6	1	44.36	
	2 022	1	,	2	^	1.1. 56	
	2.032 1.978	1 3	4 4	3	0 2	44.56 45.85	
1	1.976 1.966M	5	4	3	1	46.14	
	1.966M		2	6	Ô	46.14	
	1.959	7	2	5	2	46.32	
	1.957M	5	3	1	3	46.37	
	1.957M		4	1	2	46.37	
	1.902	6	1	0	4	47.79	
ļ	1.894M	6	3 4	2	3	47.99	
1	1.894M		4	2	2	47.99	
١							

Guanidinium Chloride, $CH_5N_3 \cdot HC1$ - (continued)

d(Å)	I^{rel} $\sigma = \pm 1$			hkl	2θ(°)
1.881	8	1	1	4	48.35
1.8011M	5	3	3	3	50.64
1.8011M		4	3	2	50.64
1.7683	2	3	5	2	51.65
1.7422	7	1	3	4	52.48
1.7279	5	3	6	1	52.95
1.7046	5	4	1	3	53.73
1.6909M	6	3	4	3	54.20
1.6909M		4	4	2	54.20

Hexamethylenetetramine, C₆H₁₂N₄

Synonym

1. 1,3,5,7-tetraazatricyclo [3.3.1.13,7]-decane

2. Methenamine

CAS registry no. 100-97-0

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, NJ. It was recrystallized from ethanol. There was one line at d = 3.152 with an intensity of 1 that was not accounted for.

Color

Colorless

Structure

Cubic, $I\overline{4}3m$ (217), Z = 2. The structure was determined quantitatively by Becka and Cruickshank [1963].

Lattice constant of this sample

a = 7.0287(3) A

Volume 347.24 A³

Density

(calculated) 1.341 g/cm³

Figure of merit

 $F_{22} = 74.3(0.010,29)$

Reference intensity

 $I/I_{corundum} = 3.84(10)$

Additional pattern

 PDF card 3-135 [Dow Chemical Co., Midland, MI]

Reference

Becka, L. N. and Cruickshank, D. W. J. (1963). Proc. Roy. Soc. Ser. A <u>273</u>, 435.

CuKa ₁	λ = 1.540598	Å;	tem	р.	25±1 °C
Inte	rnal standard	W,	a =	3.	16524 Å
d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 1$				
4.968	100	1	1	0	17.84
3.517	4	2	0	0	25.30
2.870	14	2	1	1	31.14
2.485	2	2	2	0	36.12
2.224	1L	3	1	0	40.53
2.0291	6	2	2	2	44.62
1.8784	4	3	2	1	48.42
1.6560	1L	4	1	1	55.44
1.5713	1L	4	2	0	58.71
1.4984	1	3	3	2	61.87
1.4346	1L	4	2	2	64.95
1.3786	1	5		0	67.94
1.2832	1L	5	2	1	73.78
1.2424	1	4		0	76.63
1.2057	1L	5	3	0	79.42
1.1715	1 L	6	0	0	82.22
1.1404	1L	6		1	84.98
1.0845	1L	5	4	ī	90.52
1.0595	1L	6	2	2	93.28
1.0362	1L	6	3	1	96.04
.9565	1L	7	2	1	107.29
.8927	1L	7	3	2	119.29

, and the second se	
Synonyms 1. Hydrazine sulfate 2. Hydrazonium sulfate	
CAS registry no. 10034-93-2	
Sample Hydrazinium sulfate was obtained from Fisher Scientific Co., Fair Lawn, NJ. It was recrystallized from water. The x-ray pattern was run in a humid atmosphere.	
Color Colorless	
Structure Orthorhombic, $P2_12_12_1$ (19), $Z = 4$. The structure was determined by Nitta et al. [1951] and refined by Jönsson and Hamilton [1970].	
Lattice constants of this sample	
a = 8.2579(14) Å b = 9.178(2) c = 5.5386(11)	
a/b = 0.8997 c/b = 0.6035	
Volume 6 419.78 A ³	
Density (calculated) 2.059 g/cm ³	
Figure of merit F ₃₀ = 57.4 (0.013,41)	
Reference intensity I/I = 1.47(8)	
Additional pattern 1. PDF card 4-375 (Inst. of Physics, Univ. College, Cardiff, Wales)	
References Jönsson, P. G. and Hamilton, W. C. (1970). Acta Crystallogr. <u>B26</u> , 536. Nitta, I., Sakurai, K., and Tomiie, Y. (1951). Acta Crystallogr. <u>4</u> , 289.	

CuK $lpha_1$	λ = 1.54059	98 Å; te	mp. 25		
Inter	nal standard	d Ag, a	= 4.08	651 Å	
0	Irel	1.1		20(0)	
d(A)	$\sigma = \pm 5$	hk	X.	1θ(°)	
	0 - ±3				
6 15	10		0	1/ 20	
6.15	10	1 1	0	14.39	
4.602 4.130	46	1 0 2 0		19.27 21.50	
4.130	100 20	1 2		22.12	
3.768	10	2 1		23.59	
3.700	10	2 1	U	23.39	
3.534	62	0 2	1	25.18	
3.312	1	2 0		26.90	
3.250	47	1 2		27.42	
3.116	43	2 1		28.62	
3.071	19	2 2	0	29.05	
2.769	12	0 0		32.30	
2.685	17	2 2		33.34	
2.650	6	0 1		33.80	
2.636	8	3 1		33.98	
2.625	9	1 0	2	34.13	
2.546	4	1 3	1	35.22	
2.525	10	1 1		35.53	
2.458	6	2 3		36.53	
2.381	7	3 1		37.75	
2.361	4	3 2		38.09	
2.301	•	<i>J</i> 2	Ü	30.07	
2.295	3	0 4	0	39.22	
2.280	4	1 2	2	39.50	
2.246	2	2 3	1	40.11	
2.232	9	2 1	2	40.38	
2.211	13	1 4	0	40.78	
0.170	2	2 0	,	(2.5/	
2.172	3 1	3 2 0 4		41.54 42.63	
2.119 2.052M	2	1 4		44.09	
2.052M	2	0 3		44.09	
2.047	2	3 3		44.20	
2.047	2	3 3	U	44.20	
2.013	4	4 1	0	44.99	
1.993	1	1 3		45.47	
1.953	2	3 0		46.46	
1.9100	14	3 1		47.57	
1.8924	3	4 1		48.04	
- 00				40.04	
1.8850	6	2 4		48.24	
1.8382	2	2 3		49.55	
1.7955	1	3 2		50.81	
1.7916	1	1 5	0	50.93	
1.7824	2	4 2	1	51.21	
1.7676M	5	1 1	3	51.67	
1.7676M		0 4		51.67	
1.7622	7	3 4		51.84	
1.7114	2	4 3		53.50	
1.6849	2	2 0	3	54.41	

Hydrazinium Sulfate, $(NH_3)_2SO_4$ - (continued)

d(Å)	I ^{rel}		hkl		2θ(°)	
	$\sigma = \pm 5$!
1.6778M	2	2	5	0	54.66	
1.6778M		1	2	3	54.66	
1.6579	3	2	1	3	55.37	
1.6451	1	3	3	2	55.84	
1.6346	3	4	3	1	56.23	
1.5821M	2	5	0	1	58.27	
1.5821M	_	2	2	3	58.27	
1.5595	3	5	1	1	59.20	

1. Ferric chloride hexahydrate

CAS registry no. 10025-77-1

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, NJ. It was somewhat hygroscopic.

Color

Deep orange yellow

Structure

Monoclinic, C2/m (12), Z=2. The structure of FeCl₃·6H₂O was determined by Lind [1961].

Lattice constants of this sample

a = 11.834(3) Å b = 7.029(2) c = 5.9524(13) β = 100.47(2)°

a/b = 1.6836c/b = 0.8468

Volume o 486.8 A³

Density

(calculated) 1.844 g/cm³

Figure of merit $F_{30} = 41.4(0.015,47)$

Additional pattern

1. PDF card 1-153 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457. Lind, M. D. (1967). J. Chem. Phys. <u>47</u>, 990. $CuK\alpha_1 \lambda = 1.540598 \text{ A}$; temp. $25\pm1 \text{ °C}$ Internal standard Ag, a = 4.08651 Å

d(A)	I^{rel} $\sigma = \pm 2$		hkl		2θ(°)
6.03	14	1	1	0	14.69
5.866	82	0	0	1	15.09
5.824	100	2	0	0	15.20
4.565	3	-2	0	1	19.43
4.412	5	-1	1	1	20.11
4.015	4	1	1	1	22.12
3.516	4	0	2	0	25.31
3.163	15	-3	1	1	28.19
3.015	2	0	2	1	29.61
2.927	3	0	0	2	30.52
2.909	5	4	0	0	30.71
2.818	2	-4	0	1	31.73
2.782	4	-2	2	1	32.15
2.754	7	3	1	1	32.49
2.736	3	-1	1	2	32.70
2.580	5	2	2	1	34.74
2.540	3	1	1	2	35.31
2.442	13	2	0	2	36.77
2.280	1L	-4	0	2	39.50
2.242	1	4	2	0	40.19
2.203	3	-2	2	2	40.93
2.199	4	-4	2	1	41.02
2.165	1	-1	3	1	41.69
2.060	2	3	1	2	43.92
2.004M	2	2	2	2	45.20
2.004M 2.001 1.958 1.954 1.939	2 5 5 3	3 4 5 -3 6	3 2 1 3 0	0 1 1 1 0	45.20 45.28 46.33 46.44 46.81
1.9096	3	-1	1	3	47.58
1.8979	4	4	0	2	47.89
1.8445	1L	3	3	1	49.37
1.8065	3	1	1	3	50.48
1.7721	2	-6	0	2	51.53
1.7559 1.7117 1.7058M 1.7058M 1.6982	1 1L 1	2 -2 0 -6 6	0 2 2 2 2	3 3 3 1 0	52.04 53.49 53.69 53.69 53.95
1.6815 1.6702	1L 1	2 4	2	0 2	

1. Ferric trifluoride trihydrate

Sample

The sample was obtained from City Chemical Corp., New York, NY.

Color

Blue gray.

Structure

Tetragonal, P4/n (85), Z = 2. The structure was determined by Teufer [1964].

Lattice constants of this sample

a = 7.8326(5) Ac = 3.8773(3)

c/a = 0.4950

Volume 237.87 A³

Density

(calculated) 2.330 g/cm³

Figure of merit

 $F_{30} = 80.9(0.010,36)$

Reference intensity

 $I/I_{corundum} = 2.00(4)$

Polymorphism

Nielsen [1940] reported another form of FeF3.3H20 which was colorless and was made by crystallization at a lower temperature than the form studied here.

Additional pattern

1. PDF card 1-202 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457.

Nielsen, A. H. (1940). Z. Anorg. Allgem. Chem., 244, 85.
Teufer, G. (1964). Acta Crystallogr.

17, 1480.

CuKα ₁	$\lambda = 1.540598$	A;	tem	р.	25±1 °C
Inte	rnal standard	W,	a =	3	.16524 A
d(Å)	I ^{rel}		hk	Q	2θ(°)
	$\sigma = \pm 2$				
5.542	100	1	1	0	15.98
3.917	54	2	0	0	22.68
3.879 3.476	14 49	0	0	1 1	22.91 25.61
3.177	25	1	1	1	28.06
2.769	28	2	2	0	32.30
2.600	10	2	1	1	34.47
2.475 2.253	31 1	2	1 2	0	36.27 39.99
2.1662	1L	3	0	1	41.66
2.0861	14	3	1	1	43.34
1.9586	11	4	0	0	46.32
1.8950 1.8817	13 24	3 1	2	1 2	47.97 48.33
1.8466	6	3	3	0	49.31
1.8295	3	1	1	2	49.80
1.7512	26	4	2	0	52.19
1.7061	8	4	1	1	53.68
1.6961 1.6674	9 3	2	1	2 1	54.02 55.03
1.5962	3	4	2	1	57.71
1.5569	2	3	0	2	59.31
1.5357	5	5	1	0	60.21
1.5268 1.4524	2 3	3 4	1 3	2	60.60 64.06
		4	3	1	
1.4468	9	3	2	2	64.34
1.4280 1.3849	3 1	5 4	1 4	1	65.29 67.59
1.3620	4	5	2	1	68.88
1.3570	8	4	1	2	69.17
1.3430	2	5	3	0	70.00
1.3370	1 1	3	3	2	70.36
1.2920 1.2691	1	0 5	0 3	3 1	73.20 74.74
1.2586	1L	1	1	3	75.47
1.2385	3	6	2	0	76.92
1.2275	1L	2	0	3	77.74
1.2220	1 4	6 4	1	1	78.15 78.42
1.2185 1.2036	2	5	3 1	2	78.42
1.1712	1	2	2	3	82.25
1.1635	4	5	2	2	82.91
1.1459	1	3	1	3	84.48

Lanthanum Nickel Platinum, LaNi_{0.25}Pt_{4.75}

Sample

The sample was prepared at NBS by Weisman et al. [1975].

Color

Metallic gray

Structure

Hexagonal, P6/mmm (191), Z = 1. This phase has the $CaCu_5$ type structure. The structure of $CaCu_5$ was determined by Haucke [1940].

Lattice constants of this sample

 $a = 5.3732(5) \stackrel{\circ}{A}$

c = 4.3574(7)

c/a = 0.8110

Volume o 108.95 A

Density

(calculated) 16.465 g/cm³

Figure of merit

 $F_{20} = 69.7(0.011,26)$

References

Haucke, W. (1940). Z. Anorg. Allg. Chem.

244, 17.

Weisman, I. D., Bennett, L. H., McAlister, A. J., and Watson, R. E. (1975). Phys. Rev. B 11, 82.

CuKa ₁	$\lambda = 1.540598$	٥ A;	te	mp.	25±1 °C	
Ĺ	rnal standard	W,	a	= 3	.16524 Å	
d(A)	I ^{rel} σ = ±4		hkl		2θ(°)	
4.655	36	1	0	0	19.05	
3.182	10	1	0	1	28.02	
2.685	18	1	1	0	33.34	
2.327	40	2	0	0	38.66	
2.287	100	1	1	1	39.37	
2.179	32	0	0	2	41.40	
2.0532	54	2	0	1	44.07	
1.9730	9	1	0	2	45.96	
1.7591	5	2	1	0	51.94	
1.6924	7	1	1	2	54.15	
1.6312	2	2	1	1	56.36	
1.5901	15	2	0	2	57.95	
1.5512	4	3	0	0	59.55	
1.4608	21	3	0	1	63.65	
1.3687	4	2	1	2	68.50	
1.3436	13	2	2	0	69.96	
1.2774	8	1	1	3	74.17	
1.2633	3	3	0	2	75.14	
1.2323	6	2	0	3	77.38	
1.1632	5	4	0	0	82.94	

CAS registry no. 10031-22-8

Sample

The sample originally obtained from National Lead Co. was used. These data replace a very early pattern [Swanson and Fuyat, 1953]. The new measurements have better resolution, improved intensities, and refined lattice parameters.

Major impurities

Spectrographic analysis showed 0.001 to 0.01% iron and 0.0001 to 0.001% each Ag, Al, Cu, Mg, and Si.

Color

Colorless

Structure

Orthorhombic, Pnam (62), Z = 4, isostructural with PbCl₂ [Bräkken and Harang, 1928]. The structure was determined by McBride [1967].

Lattice constants of this sample

a = 8.062(1) A

b = 9.5393(13)c = 4.7348(6)

a/b = 0.8452

c/b = 0.4964

Volume o 364.1 A^3

Density

(calculated) 6.695 g/cm³

Figure of merit

 $F_{30} = 78.8(0.014,38)$

Reference intensity

 $I/I_{corundum} = 1.83(11)$

Additional patterns

- PDF card 5-608 [Swanson and Fuyat, 1953]
 Bräkken and Harang [1928]
- 3. Döll and Klemm [1939]
- 4. Hanawalt, Rinn, and Frevel [1938]

References

Bräkken, H. and Harang, L. (1928). Z.

Kristallogr. Kristallgeometrie Kristallphys.

Kristallchem. 68, 123.

Döll, W. and Klemm, W. (1939). Z. Anorg, Allg.

Chem. <u>241</u>, 239.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457.

McBride, H. D. (1967). Diss. Abstr. $\overline{B27}$, 3891. Swanson, H. E. and Fuyat, R. K. (1953). Nat.

Bur. Stand. U.S. Circ. 539, 2, 47.

$CuK\alpha_1 \lambda =$	1.540598 A	; temp.	25±1 °C
Internal	standard W	7, $a = 3$. 16524 Å

Internal		W,	a =	3.	16524 A
d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 4$		IIKE		20()
6.16	3	,	,	۸	14.37
4.774	30	1 0	1 2	0	18.57
4.774	19	0	1	1	20.94
4.105	56	1	2	0	21.63
4.032	31	2	ō	0	22.03
	31	_	ŭ	Ŭ	22.03
3.751	73	1	1	1	23.70
3.711	8	2	1	0	23.96
3.102	50	1	2	1	28.76
3.081	55	2	2	0	28.96
3.071	56	2	0	1	29.05
0.050	0.0		2	^	20.10
2.958	23	1	3	0	30.19
2.924 2.641	100 90	2	1 3	1 1	30.55 33.92
2.586	10	3		0	34.66
2.580	9	2		1	34.74
2.500	,			_	34.74
2.509	8	1	3	1	35.76
2.495	15	2		0	35.97
2.385	28	0		0	37.69
2.367	45	0	0	2	37.98
2.341	38	3	2	0	38.42
2 226	- 4	_	,	_	22.22
2.286	14	1		0	39.38
2.271	42	3		1	39.66
2.208M 2.208M	55	2 1		1 2	40.83 40.83
2.122	5	0		2	42.58
2.122	3	Ŭ	_	_	42.50
2.099	4	3	2	1	43.06
2.052M	18	3		0	44.10
2.052M		2		0	44.10
2.042	12	2		2	44.32
2.016	8	4	0	0	44.92
1 007	2	2	,	2	/E 20
1.997 1.972	2 4	2 4		2	45.38 45.99
1.8843M	6	2		1	48.26
1.8843M	o .	3		1	48.26
1.8773	11	2		2	48.45
1.8568M	4	4		0	49.02
1.8568M		1		0	49.02
1.8554	4	4		1	49.06
1.8483	6	1		2	49.26
1.7834	7	3	4	0	51.18
1.7702	12	0	5	1	51.59
1.7459	2	3		2	52.36
1.7291M	14	1		1	52.91
1.7291M		4		ì	52.91
1.7242	10	2		0	53.07
1.7185	7	2		2	53.26
1.7023	4	4		0	53.81
1.6792	9	0		2	54.61
1.6688 1.6652	7 20	3		1 2	54.98 55.11
1.0032	20	3	2	2	33.11

Lead Bromide, $PbBr_2$ - (continued)

d(Å)	I^{rel} $\sigma = \pm 4$	hkl	2θ(°)
1.6448	4	1 4 2	55.85
1.6017	4	4 3 1	57.49
1.5896M	7	5 1 0	57.97
1.5896M		0 6 0	57.97
1.5602	2	1 6 0	59.17
1.5564M	3	0 1 3	59.33
1.5564M		3 5 0	59.33
1.5505M	4		59.58
1.5505M		3 3 2 2 4 2	59.58
1.5390	4	4 4 0	60.07
1.5346	6	4 0 2	60.26
1.5295	7	1 1 3	60.48
1.5277	7	5 2 0	60.56
1.5146	4	4 1 2	61.14
1.5068	15	5 1 1	61.49
1.4793	20	2 6 0	62.76
1.4699	6	2 0 3	63.21
1.4608M	2	4 2 2	63.65
1.4608M	_	1 5 2	63.65
1.4524	6	2 1 3	64.06
1.4384	1	5 3 0	64.76
1.4247	4	3 4 2	65.46
1.4138	7	0 3 3	66.03
1.4040	2	2 2 3	66.55
1.3938	2	2 5 2	67.10
1.3818	2	4 3 2	67.76
1.3759	2		68.09
1.3470	2 2 5	5 3 1 3 1 3	69.76
1.3358	7	5 4 0	70.43
1.3337	7	2 3 3	70.56
1.3196M	5	5 1 2	71.43
1.3196M		0 6 2	71.43
1.3094	5	0 7 1	72.07

CAS registry no. 25659-31-8

Sample

The sample was made by adding solid I_2O_5 to an aqueous solution of $Pb(NO_3)_2$. This was digested by boiling for 1 hour and filtered. The solid was then heated at 300 °C for 2 hours and at 250 °C for 16 hours.

Color Colorless

Structure

Orthorhombic, Pnaa (56), Z = 4 [Staritzky and Walker, 1956].

Lattice constants of this sample

a = 6.090(2) Ab = 16.690(3)

c = 5.580(2)

a/b = 0.3649c/b = 0.3343

Volume o 567.2 A³

Density (calculated) 6.523 g/cm³

Figure of merit $F_{30} = 31.1(0.017,58)$

Reference intensity
I/I = 11.9(5)

Additional pattern

 PDF card 11-85 [Staritzky and Walker, 1956]

Reference

Staritzky, E. and Walker, D. I. (1956). Anal. Chem. 28, 914.

$CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$					
Inte	ernal standar	d Si,	a	=	5.43088 Å
d(A)	I^{rel} $\sigma = \pm 1$		hkl		2θ(°)
					
8.36	4	0	2	0	10.57
3.996	2	1	1	1	22.23
3.694	2	1	2	1	24.07
3.309	100	1	3	1	26.92
3.047	15	2	0	0	29.29

d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 1$		
2.999	2	2 1 0	29.77
2.931	1	1 4 1	30.47
2.864	2	0 5 1	31.20
2.784	23	0 6 0	32.12
2.673M	1L	2 0 1	33.50
2.673M		2 3 0	33.50
2.647	1	0 2 2	33.84
2.594	4	1 5 1	34.55
2.546	1L	2 2 1	35.22
2.508	1L	1 1 2	35.77
2.462	1	2 4 0	36.47
2.307	1L	1 3 2	39.01
2.250M	1	2 5 0	40.04
2.250M		2 4 1	40.04
2.194	1L	0 7 1	41.10
2.086M	1L	0 8 0	43.34
2.086M		2 5 1	43.34
2.055	20	2 6 0	44.04
2.043	6	2 1 2	44.31
1.996	1	2 2 2	45.39
1.969	11	0 6 2	46.05
1.930	1L	2 3 2	47.05
1.895	1	3 1 1	47.98
1.877	1L	2 7 0	48.47
1.860M	3	3 2 1	48.94
1.860M		1 8 1	48.94
1.804	9	3 3 1	50.56
1.751	1	2 5 2	52.20
1.735	2	3 4 1	52.70
1.7215	1	2 8 0	53.16
1.6909	19	1 9 1	54.20
1.6707	1	0 8 2	54.91
1.6538	10	2 6 2	55.52
1.6373	1L	1 4 3	56.13
1.5691	1L	1 5 3	58.80
1.5569	1L	2 7 2	59.31
1.5460	1L	1 10 1	59.77
1.5220	1	4 0 0	60.81
1.4643+	1L	0 11 1	63.48
1.4643+		2 8 2	63.48
1.4235	1	1 11 1	65.52
1.4079	i	3 8 1	66.34
1.3905	2	0 12 0	67.28

CAS registry no. 1310-65-2

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, N. J. It contained a small amount of LiOH·H₂O and was somewhat unstable in air. The d-spacing patterns were run with the sample in vacuum grease, and the intensity patterns run with the sample in Canada Balsam.

Structure

Tetragonal, P4/nmm (129), Z = 2. The structure of LiOH was determined by Ernst [1933].

Lattice constants of this sample

a = 3.5528(5) Ac = 4.3476(9)

c/a = 1.2237

Volume 54.88 A³

Density (calculated) 1.449 g/cm³

Figure of merit $F_{15} = 63.5(0.013,18)$

Additional pattern
1. PDF card 4-708 [Ernst, 1933]

Reference

Ernst, T. (1933). Z. Phys. Chem. Leipzig <u>B20</u>, 65.

CuK0 1	$\lambda = 1.5405$	98 Å;	te	mp.	25±1 °C	
Inter	nal standar	d Si,	a	= 5	.43088 Å	
d(A)	I ^{rel}		hkl		2θ(°)	
	$\sigma = \pm 2$					
4.352	43	0	0	1	20.39	
2.754	100	1	0	1	32.49	
2.514	22	1	1	0	35.69	
2.174M	2	1	1	1	41.51	
2.174M		0	0	2	41.51	
1.8540	6	1	0	2	49.10	
1.7760	16	2	0	0	51.41	
1.6435M	13	2	0	1	55.90	
1.6435M		1	1	2	55.90	
1.4919	10	2	1	1	62.17	
1.4492	1	0	0	3	64.22	
1.3754	1	2	0	2	68.12	
1.3418	1	1	0	3	70.07	
1.2828	3	2	1	2	73.81	
1.2552	4	1	1	3	75.71	
1.2068	1	2	2	1	79.33	
1.1427	1	3	0	1	84.77	

CAS registry no. 12007-62-4

Sample

The sample was prepared by heating a 1:4 molar mixture of MgCO $_3$ and H $_3$ BO $_3$ at 600 °C for 3 days, followed by heating one hour at 800 °C, and 16 hours at 600 °C with intermittent grinding. There was a very small amount of Mg₂B₂O₅ present.

Color Colorless

Structure Orthorhombic, Pbca (61), Z = 8 [Kuzel, 1964]. Davis and Knight [1945] reported that this phase had the composition of MgB2O4.

Lattice constants of this sample

a = 8.596(2) Ab = 13.729(4)c = 7.956(2)

a/b = 0.6261c/b = 0.5795

Volume 938.9 Å³

Density (calculated) 2.540 g/cm³

Figure of merit $F_{30} = 32.8(0.014,64)$

Reference intensity $I/I_{corundum} = 0.57(11)$

Additional pattern 1. PDF card 17-927 [Kuzel, 1964]

References

Davis, H. M. and Knight, M. A. (1945). J. Amer. Ceram. Soc. 28, 100. Kuzel, H.-J. $(\overline{19}64)$. Neues Jahrb. Mineral.

Monatsh. 1964, 357.

CuKa ₁	$\lambda = 1.5405$	98 Å;	te	mp.	25±1 °C
	nal standar	d Ag,	a	= 4	.08651 Å
d(A)	I ^{rel}	ŀ	ıkl		2Θ(°)
	$\sigma = \pm 2$				
6.86	21	0	2	0	12.89
5.37	19	1	1	1	16.50
5.196	98	0	2	1	17.05
4.447	81	1	2	1	19.95
4.098	24	2	1	0	21.67
3.976	100	0	0	2	22.34
3.636	37	2	2	0	24.46
3.607M 3.607M	42	1 1	0	2	24.66 24.66
3.441	64	0	2	2	25.87
31.141		Ü		_	
3.314	5	2	2	1	26.88
3.194	9 34	1 2	2	2	27.91 28.46
3.134 2.959	34 13	1	3 4	1	30.18
2.916M	29	2	0	2	30.63
2.916M 2.836	51	2 1	3	1	30.63 31.52
2.836	33	2	3	2	31.52
2.644	8	3	1	1	33.87
2.542	6	2	4	1	35.28
2 405	10	,	_	,	26 12
2.485	18 21	1 0	5 2	1 3	36.12 36.28
2.325M	6	3	0	2	38.70
2.325M		3	3	1	38.70
2.223M	43	2	4	2	40.54
2.223M		2	5	1	40.54
2.203	11	3	2	2	40.93
2.149	10	4	0	0	42.01
2.123	2	4	1	0	42.55
2.074	3	3	3	2	43.61
2.051M	5	4	1	1	44.12
2.051M		4	2	0	44.12
2.001	8	2	5	2	45.29
1.987M 1.987M	10	0 4	0	4 1	45.61 45.61
		7		•	
1.958	7	2	6	1	46.34
1.945	16	4	3	0	46.67
1.924M 1.924M	21	3	4 5	2 1	47.19 47.19
1.9241	7	0	2	4	47.19
1.886	4	2	4	3	48.20
1.872 1.872	4	4 3	1 2	2 3	48.60 48.60
1.861	3	1	5	3	48.89
1.822M	7	4	2	2	50.02
1.822M		4	4	0	50.02
1.789	9	2	1	4	51.02
1.7450M	5	2	2	4	52.39
1.7450M		3	6	1	52.39
1.7227	8	1	7	2	53.12
·			_		

CAS registry no. 13446-17-8

Sample

The sample obtained from the Eastman Kodak Co., Rochester, NY, was recrystallized from an aqueous solution at room temperature.

Color

Colorless

Structure

Monoclinic, $P2_1/a$ (14), Z=2. It was assumed to be isostructural with $Co(IO_3)_2 \cdot 4H_2O$ and β -Ni(IO_3)₂· $4H_2O$ from a comparison of the powder patterns and the cell sizes. The latter compounds were studied by Abrahams et al. [1973]. Preliminary lattice constants for Mg(IO_3)₂· $4H_2O$ were obtained by the use of the axial ratios given by Groth [1908].

Lattice constants of this sample

a = 8.5063(15) Å b = 6.6362(15) c = 8.3306(12) β = 100.59(1)°

a/b = 1.2818c/b = 1.2554

Volume 6 462.25 A³

Density (calculated) 3.206 g/cm³

Figure of merit $F_{30} = 47.8(0.015,41)$

Reference intensity
I/I = 2.44(8)

Additional pattern

 PDF card 20-676 [University College, Cardiff, Wales]

References

Abrahams, S. C., Sherwood, R. C., Bernstein, J. L., and Nassau, K. (1973). J. Solid State Chem. 7, 205.

Chem. 7, 205. Groth, P. (1908). Chemische Krystallographie II (Engelmann, Leipzig, Germany) p. 120.

ſ	СиКа	$\lambda = 1.54059$	8 Å;	te	mp.	25±1 °C
		rnal standard	l Si,	a	=	5.43088 Å
	d(A)	I ^{rel}	1	hkl		2θ(°)
-		$\sigma = \pm 2$				
	8.18	24	0	0	1	10.81
	5.154 4.631	100 13	0 -1	1	1	17.19 19.15
1	4.174M	74	2	Ô	ō	21.27
	4.174M		1	1	1	21.27
	4.094	12	0	0	2	21.69
l	3.535	8	2 2	1	0	25.17
	3.478 3.445	55 48	-2	0	1	25.59 25.84
١	3.413	8	-1	1	2	26.09
١	3.318	5	0	2	0	26.85
I	3.236	13	-2	0	2	27.54
l	3.077M	15	2	1	1	29.00
	3.077M 3.052	2	0	2	1 2	29.00 29.24
			_			
l	2.954 2.912	30 4	-1 -2	2 1	1 2	30.23 30.68
l	2.826	4	1	2	1	31.64
ļ	2.728	22	0	0	3	32.80
I	2.599	9	2	2	0	34.48
	2.577M	6	-3	1	1	34.78
	2.577M	6	0 3	2	2	34.78 34.88
	2.570 2.540	9	-1	1	3	35.31
	2.525	5	0	1	3	35.52
l	2.506	5	-2	0	3	35.81
	2.493	6	2	1	2	36.00
	2.397 2.387	6 11	2 1	2	1 2	37.49 37.66
	2.364	3	-3	1	2	38.04
	2.343M	2	-2	1	3	38.39
	2.343M		3	1	1	38.39
	2.316	4	-2	2	2	38.85
	2.311 2.137M	3 17	1 1	1	3	38.94 42.26
	2.137M 2.114	6	0 2	3 0	1	42.26 42.74
	2.089M	4	4	0	0	43.27
	2.089M	,	2	2	2	43.27
	2.046M	4	0	0	4	44.23
	2.046M	1.1	1 -4	3	1	44.23 44.85
	2.019M 2.019M	11	-4 -4	1	1 2	44.85
	2.015	11	2	1	3	44.95
	1.994	4	4	1	0	45.46
	1.956M	4	0	1	4	46.39
	1.956M	4	2 4	3	0	46.39 46.76
	1.941M 1.941M	4	-2	3	1	46.76
	1.904	5	-2	1	4	47.72

Magnesium Iodate Hydrate, $Mg(IO_3)_2 \cdot 4H_2O$ - (continued)

d(Å)	Irel	hk	٤	2Θ(°)
	$\sigma = \pm 2$			
1.866	1	2 3	1	48.77
1.834	3	1 1	4	49.68
1.7925	2	3 2	2	50.90
1.7619	3 2 3 2	-1 2	4	51.85
1.7425	2	0 2	4	52.47
1.7370	4	4 0	2	52.65
1.7327	4	3 3	0	52.79
1.7236M	7	-4 2		53.09
1.7236M	ŕ	-1 3	2 3	53.09
1.6801	2	4 1	2	54.58
	_		_	000
1.6758	2	4 2	1	54.73
1.6654	2	-3 3		55.10
1.6465	2	1 3	2 3 5	55.79
1.6298	2 1	-2 0	5	56.41
1.6190	ī	-4 0	4	56.82
1.51,0				55.52
1.6092	2	- 5 1	2	57.20
1.5901	4	0 1	5	57.95
1.5730	2	-4 1	4	58.64
1.3/30	2	7 1	7	30.04

CAS registry no. 7439-96-5

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, NJ. It was annealed in vacuum at 650 °C for 4 hours.

Color

Metallic gray

Structure

Cubic, $\overline{143}$ m (217), Z = 58 [Gazzara et al.,

Lattice constant of this sample

a = 8.9121 (4) A

Volume 707.85 Å³

Density

(calculated) 7.475 g/cm³

Figure of merit $F_{30} = 69.9 (0.012,37)$

Polymorphism

There are also β , γ , and δ Mn, the most probable transition temperatures being $\alpha \stackrel{>}{\underset{\sim}{\leftarrow}} \beta$, 700 °C; $\beta \stackrel{?}{\downarrow} \gamma$, 1079 °C; $\alpha \stackrel{?}{\downarrow} \delta$ 1143 °C [Sully, 1955].

Additional patterns

1. PDF card 1-1237 [Hanawalt et al., 1938].

2. PDF card 20-180 [Swanson et al., 1969].

References

Gazzara, C. P., Middleton, R. M., Weiss, R. J., and Hall, E. O. (1967). Acta Crystallogr. 22, 859.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K.

(1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457. Sully, A. H. (1955). <u>Manganese</u> (Butterworth Scientific Publications, London), p. 127.

Swanson, H. E., McMurdie, H. F., Morris, M. C., and Evans, E. H. (1969). Nat'l. Bur. Std. U.S. Monogr. 25, Sec. 7, 142.

CuKa	$\lambda = 1.540598$	A;	te	mp.	25±1 °C
	ernal standard	W,	а	= 3	.16524 A
d(A)	I^{rel} $\sigma = \pm 2$		h	kl	2θ(°)
3.641	1L	2	1	1	24.43
3.153	1	2	2	0	28.28
2.571	3	2	2	2	34.87
2.382	3	3	2	1	37.74
2.227	7	4	0	0	40.48
2.101	100	4	1	1	43.01
1.8994	24	3	3	2	47.85
1.8193	9	4	2	2	50.10
1.7475	14	5	1	0	52.31
1.6274	1	5	2	1	56.50
1.5286	1L	5	3	0	60.52
1.4857	1	6	0	0	62.46
1.4460	1	6	1	1	64.38
1.4088	1L	6	2	0	66.29
1.3754	1L	5	4	1	68.12
1.3435	2	6	2	2	69.97
1.3138	1L	6	3	1	71.79
1.2864	4	4	4	4	73.57
1.2605	7	7	1	0	75.34
1.2125	17	7	2	1	78.88
1.1911	3	6	4	2	80.59
1.1701	2	7	3	0	82.34
1.1317	3	7	3	2	85.79
1.0969	2	8	1	1	89.22
1.0806	1	8	2	0	90.93
1.0652	1	6	5	3	92.63
1.0504	6	8	2	2	94.33
1.0361	1	8	3	1	96.05
1.0223	1L	6	6	2	97.79
1.0091	1	7	5	2	99.52

Synonym
1. Mercurous Acetate
CAS registry no. 631-60-7
Sample ${\rm Hg_2(NO_3)_2\cdot 2H_2O}$ was dissolved in water with addition of 25% ${\rm HNO_3}$ and treated with a solution of ${\rm CH_3CO_2Na}$. The precipitate was washed with cold water and dried in a desiccator [Brauer, 1963].
Color Colorless
Structure Monoclinic, A*/*, Z = 2 [Puff et al., 1965].
Lattice constants of this sample
a = 12.185(3) \mathring{A} b = 5.966(2) c = 5.1867(13) β = 100.08(2)°
a/b = 2.0424 c/b = 0.8694
Volume o 371.2 A ³
Density (calculated) 4.645 g/cm ³
Figure of merit $F_{30} = 54.5(0.013,42)$
Additional pattern 1. PDF card 19-799 [Puff et al., 1965]
References Brauer, G. (1963). <u>Handbook of Preparative</u> <u>Inorganic Chemistry</u> , (Academic Press, New York, NY) p. 1120. Puff, H., Lorbacher, G., and Skrabs, R. (1965). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. <u>122</u> , 156.

CuKa 1	$\lambda = 1.54059$	8 Å;	te	mp. 2	25±1 °C
Inter	nal standard	l Ag,	a	= 4.0	08651 Å
d(Å)	Irel		hkl		2Θ(°)
	$\sigma = \pm 2$				
12.02	100	1	0	0	7.35
6.00	1	2	0	0	14.74
4.001 3.877	3 11	3	0 1	0 1	22.20 22.92
3.849	15	-1	1	l	23.09
3.553	2	1	1	1	25.04
3.477	14	-2	1	1	25.60
3.079	1	2	1	1	28.98
3.000	14	4	0	0	29.76
2.894	5	1	2	0	30.87
2.615	4	3	1	1	34.26
2.593	2	-1	0	2	34.57
2.544	1 L	-4	1	1	35.25
2.514	3	-2	0	2	35.69
2.399	8	5	0	0	37.46
2.346	2	-3	0	2	38.33
2.233	8	4	1	1	40.35
2.215	2 2	2 -5	0 1	2	40.71
2.174 2.137	1	-4	0	1 2	41.51 42.26
2.115	3	4	2	0	42.72
2.000M	6	6	0	0	45.30
2.000M		3	0	2	45.30
1.956	1	-1	2	2	46.39
1.928	3	5	1	1	47.10
1.924	3	- 5	0	2	47.20
1.882	4	- 6	1	1	48.32
1.870	3	5	2	0	48.64
1.849	2 2	-1	3	1	49.23
1.845	2	- 3	2	2	49.36
1.8031	1	-2	3	1	50.58
1.7958	1	4	0	2	50.80
1.7769 1.7276	1 1L	2 -6	2	2 2	51.38 52.96
1.7141	1L	7	0	0	53.41
1.6602+	2	-1	1	3	55.29
1.6602+		3	2	2	55.29
1.6503M	2	-7	1	1	55.65
1.6503M		-2	1	3	55.65

 Mercury oxide nitrate hydrate, Hg₂0(NO₃)₂·H₂0

Sample

The sample was prepared by dissolving ${\rm HgNO_3 \cdot H_2O}$ in a mixture of ${\rm HNO_3}$ and ${\rm H_2O}$. The solution was evaporated at room temperature. The first crystals formed were a mixture of phases and were discarded. The second crystals formed were used to obtain the measurements.

${\tt Color}$

Colorless

Structure

Monoclinic, $P2_1/n$ (14), Z = 4. The structure was determined by Ribár et al. [1971].

Lattice constants of this sample

 $a = 7.7438(11) \stackrel{\circ}{A}$

b = 7.1944(11)

c = 6.5893(11)

 $\beta = 114.28(1)^{\circ}$

a/b = 1.0764

c/b = 0.9159

Volume

 $334.62 A^3$

Density

(calculated) 5.550 g/cm³

Figure of merit

 $F_{30} = 39.1 (0.013,58)$

Reference intensity

 $I/I_{corundum} = 9.2(5)$

Additional pattern

 PDF card 11-189 [Bernstein et al., 1957]

References

Bernstein, R. B., Pars, H. G., and Blumenthal, D. C. (1957). J. Am. Chem. Soc. 79, 1579. Ribár, B., Matković, B., Sljukić, M., and Gabela, F. (1971). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 134, 311.

CuKα ₁ λ	= 1.540598	8 A;	te	mp.	25±1 °C
	standard	Ag,	a	= 4	.08651 Å
d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 2$				
					
5.93	100	-1	0	1	14.93
4.614	1	0	1	1	19.22
4.583	2	-1	1	1	19.35
3.862	33	1	0	1	23.01
3.526	18	2	0	0	25.24
3.404	2	1	1	1	26.16
3.361	2	-2	1	1	26.50
3.207	32	1	2	0	27.80
3.088	18	0	2	1	28.89
3.005	19	0	0	2	29.71
2.969	19	-2	0	2	30.07
2.630	3	1	2	1	34.06
2.612	12	-2	2	1	34.31
2.582 2.454	9 3	-3 2	0 1	1 1	34.72
2.434	3	2	1	1	36.59
2.430M	11	-1	2	2	36.97
2.430M		-3	1	1	36.97
2.267	1_	-3	1	2	39.73
2.236	1L	3	1	0	40.30
2.176	6	-1	0	3	41.47
2.113	5	2	2	1	42.77
2.012	4	1	2	2	45.01
1.991	5	-3	2	2	45.53
1.984	4	2 -3	3	0	45.70 45.82
1.979	4	-3	U	3	43.62
1.970	4	3	2	0	46.04
1.937	1	3	0	1	46.86
1.930M	2	2	0	2	47.05 47.05
1.930M 1.9013	2	-4	1	3	47.03
	2	7	J	_	
1.8704	1	3	1	1	48.64
1.8547M	4	-4	1	1	49.08
1.8547M	1L	-2 -4	2	3 2	49.08 49.56
1.8378 1.7982	3	-4	4	0	50.73
1.1702	3	U	7	J	30.73
1.7641	1	4	0	0	51.78
1.7487	3	0	2	3	52.27
1.7435 1.7206	2 3	1 -1	4	0 1	52.44 53.19
1.7206	1	4	1	0	53.43
1.6938M 1.6938M	2	-4 -3	2	1 2	54.10 54.10
1.07.5011					
	1	-7	(1	4	22.77
1.6470	1 2	-2 1	0 4	4	55.77 56.41

Mercury Hydroxide Nitrate, $Hg(OH)NO_3$ - (continued)

d(A)	I ^{rel} σ = ±2		hkl		2θ(°)
1.6025	1	2	4	0	57.46
1.5519	1	-4	2	3	59.52
1.5425	2	0	4	2	59.92
1.5383	2	-2	4	2	60.10
1.5204	1L	- 5	0	1	60.88
1.5013	1	0	0	4	61.74
1.4978M	1L	4	1	1	61.90
1.4978M		-2	2	4	61.90
1.4874	1	-5	1	1	62.38
1.4836	1	-4	0	4	62.56
1.4743	1	- 5	0	3	63.00
1.4699M	2	0	1	4	63.21
1.4699M		-1	2	4	63.21
1.4608	1	-3	2	4	63.65

CAS registry no. 12045-19-1

Sample

The sample obtained from the metallurgy Section at NBS was a mixture of ζNbB + Nb.

Color

Metallic gray

Structure

Orthorhombic, Cmcm(63), Z = 4. The structure was studied by Andersson and Kiessling [1950] and by Brewer et al., [1951]. It is isostructural with CrB.

Lattice constants of this sample

a = 3.2973(4) Ab = 8.7229(10)c = 3.1663(3)

a/b = 0.3780c/b = 0.3630

Volume 91.069 A³

Density

(calculated) 7.565 g/cm³

Figure of merit $F_{27} = 74.4(0.0095,38)$

Additional pattern

1. PDF card 29-947 [Spear, K. and Blanks, Pennsylvania State University, University Park, PA].

References

Andersson, L. H. and Kiessling, R. (1950). Acta Chem. Scand. 4, 160.

Brewer, L., Sawyer, D. L., Templeton, D. H., and Dauben, C. H. (1951). J. Amer. Ceram.

Soc. <u>34</u>, No. 6, 173.

 $CuK\alpha_1 \lambda = 1.540598 A$; temp. 25±1 °C Internal standard Si, a = 5.43088 A Irel d(A) hkl 2θ(°) $\sigma = \pm 4$ 4.363 0 2 0 20.34 46 3.084 1 1 0 28.93 2.564 80 0 2 34.97 1 40.81 2.209 100 1 1 1 97 3 41.37 2.181M 1 ٥ 2.181M 0 4 0 41.37 1.7965M 30 1 3 50.78 1.7965M 0 50.78 1 1.6481 18 2 0 0 55.73 1.5831 13 0 0 2 58.23 2 2 0 59.95 1.5418M 2 1.5418M 1 5 0 59.95 0 1.4885 1 2 62.33 1.4540 6 0 6 0 63.98 1.4087 10 1 1 66.30 1.3863M 52 2 2 67.51 1 5 67.51 1.3863M 1 0 6 71.33 1.3212 8 1 1.3148 10 2 4 0 71.73 3 1.2808M 27 1 2 73.94 1.2808M 0 4 2 73.94 1.2145 6 2 4 1 78.73 1 7 0. 82.73 1.1656 14 1.1419 9 2 0 2 84.84 1.1047M 2 2 2 2 88.42 1.1047M 5 88.42 1 2 1.0904+ 2 6 89.89 5 0 1.0904+ 0 8 0 89.89 3 1.0707 0 6 2 92.01 2 1.0308+ 17 6 96.71 1.0308+ 0 8 1 96.71

1.0283

1.0257

1.0116 .9986 13

7

8

6

3 3 0

0 2 3

2 4 2

1 3

97.03

97.35

99.18

100.96

1. 2,2-Bis(hydroxymethyl)-1,3-propanediol

CAS registry no. 115-77-5

Sample

The sample was obtained from Eastman Organic Chemicals, Rochester, NY. It was recrystallized from ethanol.

Color

Colorless

Structure

Tetragonal, $\overline{14}$ (82), Z = 2. The structure was determined by Llewellyn et al. [1937] and Nitta and Watanabé [1937] and [1938a]. It was later refined by Shiono et al. [1957], [1958].

Lattice constants of this sample

a = 6.0890(12) Ac = 8.7481(16)

c/a = 1.4367

Volume 324.34 A^3

Density (calculated) 1.394 g/cm³

Figure of merit $F_{23} = 58.9(0.012,33)$

Reference intensity $I/I_{corundum} = 5.33(7)$

Polymorphism

There is a cubic high temperature form stable from 179.5 °C to the melting point (260.5 °C). [Nitta and Watanabé, 1938b].

Additional pattern

1. PDF card 3-214 [Dow Chemical Co. Midland, MI]

References

Lewellyn, F. J., Cox, E. G., and Goodwin, T. H. (1937). J. Chem. Soc. London, 1937, 883. Nitta, I. and Watanabé, T. (1937). Nature

London 140, 365.

Nitta, I. and Watanabé, T. (1938a). Sci. Pap.

Inst. Phys. Chem. Res. Tokyo <u>34</u>, 1669. Nitta, I. and Watanabé, T. (1938b). Bull. Chem. Soc. Japan <u>13</u>, 28.

Shiono, R., Cruickshank, D. W. J., and Cox, E. G.

(1957). Acta Crystallogr. 10, 794. Shiono, R., Cruickshank, D. W. J., and Cox, E. G. (1958). Acta Crystallogr. 11, 387.

CuKa ₁	$\lambda = 1.540598$	ß Å;	te	mp.	25±1 °C
Inte	ernal standard	d W,	а	= 3	.16524 Å
d(A)	I ^{rel} σ = ±	1	hkl		20(°)
4.998	6	1	0	1	17.73
4.371	100	0	0	2	20.30
4.306	4	1	1	0	20.61
3.068	7	1	1	2	29.08
3.044	4	2	0	0	29.32
2.632	2	1	0	3	34.04
2.601	4	2	1	1	34.46
2.499	3	2	0	2	35.90
2.186	1	0	0	4	41.26
2.153	1	2	2	0	41.93
1.991	2	2	1	3	45.53
1.9506	1	1	1	4	46.52
1.9314	2	2	2	2	47.01
1.7769	1L	2	0	4	51.38
1.7619	1L	3	1	2	51.85
1.6815	1L	1	0	5	54.53
1.6649	1	3	0	3	55.12
1.6591	1	3	2	1	55.33
1.5336	1L	2	2	4	60.30
1.4722	1L	2	1	5	63.10
1.4581	1L	0	0	6	63.78
1.4451	1L	3	1	4	64.42
1.3250	1L	3	0	5	71.09

1. Hydrazinobenzene hydrochloride

CAS registry no. 59-88-1

Sample

The sample was obtained from Eastman Kodak Co., Rochester, NY. One of the lines at $2\theta = 38.96^{\circ}$ came only within 0.06° of the calculated value.

Color

Colorless

Structure

Monoclinic, $P2_1/n$ (14), Z = 4. The structure was studied by Koo [1965].

Lattice constants of this sample

a = 6.066(2) A

b = 30.641(6) c = 3.884(2)

 $\beta = 100.86(5)^{\circ}$

a/b = 0.1980c/b = 0.1268

Volume 0 709.0 Å³

Density

(calculated) 1.355 g/cm³

Figure of merit

 $F_{30} = 13.0(0.014, 172)$

Reference intensity

 $I/I_{corundum} = 1.28(14)$

Reference

Koo, O. H. (1965). Bull. Chem. Soc. Jpn.

38, 262.

CuKa ₁	$\lambda = 1.540598$	o A; t	emp	. 2	5±1 °C	
	rnal standard	W, a	=	3.1	6524 Å	
d(A)	I^{rel} $\sigma = \pm 3$	hk	e		2θ(°)	
15.30	100	0	2	0	5.77	
7.66	22	0	4	0	11.54	
5.556 4.706	30 22	1	2 4	0	15.94 18.84	
3.831	90	0	8	0	23.20	
3.700	20	0 -1	2	1	24.03	
3.524M 3.524M	8	1	7	1 0	25.25 25.25	
3.507 3.417	12 22	-1 0	1 4	1 1	25.38 26.06	
3.224	13	1	8		27.65	
3.065	33	0	10	0	29.11	
2.977 2.924	41 12	2	0	0	29.99 30.55	
2.901	4	-1	6	1	30.80	
2.703	4	0	8	1	33.11	
2.555 2.352	33 8	0 2	12 8	0	35.09 38.24	
2.310	4	-1	10	1	38.96	
2.188	1	0	14	0	41.22	
2.185	2	-1	11	1	41.28	
2.137M 2.137M	9	2	2 10	1	42.26 42.26	
2.065	3	-2	9	1	43.81	
2.034	1	2	11	0	44.51	
1.938 1.9160M	8	2 -3	12	0 1	46.83 47.41	
1.9160M	3	0	16	0	47.41	
1.8234M	5	1	16	0	49.98	
1.8234M		2	9	1	49.98	
1.7616+	2	-1	7	2	51.86	
1.7616+	-	1	14	1	51.86	
1.7111 1.6696	5 1	0 -3	16 9	1 1	53.51 54.95	
1.6370+	2	3	1	1	56.14	
1.6370+		1	18	0	56.14	
1.6105	1	2	16	0	57.15	
1.6061M 1.6061M	1	-2 -1	15 17	1 1	57.32 57.32	
1.5545	1	0	18	1	59.41	
1.5323M	2	-3	12	1	60.36	
1.5323M		0	20	0	60.36	
1.4823M	2	4	2	0	62.62	
1.4823M 1.4778+	2	-3 -4	5 2	2 1	62.62 62.83	
1.4778+		2	18	0	62.83	

1. Potassium hexafluoroarsenate

CAS registry no. 17029-22-0

Sample

The sample was obtained from Alfa Inorganics, Beverly, MA.

Color

Colorless

Structure

Hexagonal, R3m (166), Z = 3. The structure was determined by Roof [1955] and refined by Ibers [1956]. It is isostructural with NH₄SbF₆.

Lattice constants of this sample

a = 7.3780(4) Ac = 7.3095(5)

c/a = 0.9907

Volume 0 344.58 Å³

Density

(calculated) 3.296 g/cm³

Figure of merit

 $F_{30} = 100.6(0.009,32)$

Reference intensity

 $I/I_{corundum} = 3.00(8)$

References

Roof, R. B. Jr., (1955). Acta Crystallogr. 8. 739.

Ibers, J. A. (1956). Acta Crystallogr. 9, 967.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard W, a = 3.16524 Å

Internal standard W, a = 3.16524 Å					
d(A)	I ^{rel} σ = ±2	hkl	2θ(°)		
4.810	69	1 0 1	18.43		
3.684	100	1 1 0	24.14		
3.170	62	0 1 2	28.13		
2.927	14	0 2 1	30.52		
2.436	3	0 0 3	36.87		
2.405	7	2 0 2	37.36		
2.293	4	2 1 1	39.26		
2.1287	5	3 0 0	42.43		
2.0317	7	1 1 3	44.56		
2.0146	50	1 2 2	44.96		
1.8445	7	2 2 0	49.37		
1.7569	2	1 0 4	52.01		
1.7227	5	1 3 1	53.12		
1.6035	5	3 0 3	57.42		
1.5947	5	3 1 2	57.77		
1.5859	6	0 2 4	58.12		
1.4707	3	2 2 3	63.17		
1.4632	9	0 4 2	63.53		
1.4571	12	2 1 4	63.83		
1.4370	2	3 2 1	64.83		
1.3943	6	4 1 0	67.07		
1.3605	4	2 3 2	68.97		
1.3293	1	2 0 5	70.83		
1.2720	2	1 3 4	74.54		
1.2588	1L	0 5 1	75.46		
1.2506	1L	1 2 5	76.04		
1.2299	3	3 3 0	77.56		
1.2181	1	0 0 6	78.45		
1.2101	1	4 1 3	79.07		
1.2063	3	5 0 2	79.37		
1.2028	3	4 0 4	79.65		
1.1914	1	2 4 1	80.56		
1.1570	2	1 1 6	83.48		
1.1466	2	4 2 2	84.41		
1.1436	2	3 2 4	84.69		
1.1338	1	5 1 1	85.59		
1.1279	1	3 1 5	86.15		
1.0951	1L	1 5 2	89.40		
1.0649	1L	6 0 0	92.66		
1.0574	1	3 0 6	93.52		
1.0473	1L	0 5 4	94.70		
1.0398	1	4 3 1	95.60		
1.0352	1L	2 3 5	96.16		
1.0307	1L	1 0 7	96.73		
1.0231	1L	5 2 0	97.69		
1.0165	1L	2 2 6	98.54		
1.0093	1L	3 4 2	99.49		
1.0074	1L	2 4 4	99.75		

CAS registry no. 13455-24-8

Sample

A sample labelled KH(IO $_3$) $_2$ was obtained from Fisher Scientific Co., Fair Lawn, N. J. It was recrystallized in water solution with the pH adjusted with I $_2$ O $_5$. This γ -phase decomposes in moist air and minor amounts of another phase may be present. The reflection, d = 4.590 and I = 15 has $2\theta_{obs}$ - $2\theta_{calc}$ = 0.056°.

Color

Colorless

Structure

Monoclinic, $P2_1/c$ (14), Z = 8 [Argay et al., 1969].

Lattice constants of this sample

a = 21.853(5) A

b = 8.206(3)

c = 7.031(2)

 $\beta = 98.02(3)^{\circ}$

a/b = 2.6631

c/b = 0.8568

Volume o 1249. A³

Density

(calculated) 4.149 g/cm³

Figure of merit

 $F_{30} = 16.8(0.018,97)$

Polymorphism

The monoclinic polymorph, α -KH(IO $_3$) $_2$, also has the space group P2 $_1$ /a but a cell volume of 629.6 Å 3 [Argay et al., 1969].

Additional pattern

1. Argay et al. [1969]

References

Argay, Gy., Náray-Szabó, I., and Péter, É. (1969). J. Therm. Anal. $\underline{1}$, 413.

СиКа	$_{1} \lambda = 1.54059$	8 Å;	te	mp.	25±1 °C
Int	ernal standar	d W,	a	= 3	.16524 Å
d(A)	I ^{rel}		h	kl	2θ(°)
	$\sigma = \pm 3$				` ,
10.87	1L	2	0	0	8.13
6.55	1L	2	1	0	13.50
5.41M	41	3	1	0	16.38
5.41M	0	4	0	0	16.38
5.32	21	0	1	1	16.66
5.03	5	1	1	1	17.61
4.591	15	2	1	1	19.32
4.526	10	4	1	0	19.60
4.075	5	3	1 2	1	21.79
4.032	7	1	2	0	22.03
4.005	2	-4	1	1	22.18
3.831M	9	2	2	0	23.20
3.831M	(0	5	1	0	23.20
3.602M	60	6 4	0	0	24.70
3.602M		4	1	1	24.70
3.530M	20	0	2	1	25.21
3.530M		-1	2	1	25.21
3.481	42	0	0	2	25.57
3.457	45	-2	0	2	25.75
3.268M	100	4	2	0	27.27
3.268M		-3	2	1	27.27
3.186M	44	2	0	2	27.98
3.186M	10	-2	1	2	27.98
3.142 3.135	18 17	-6 -4	1	1 2	28.38 28.45
3.133	17	-4	U	2	20.43
3.089M	41	7	0	0	28.88
3.089M	_	3	2	1	28.88
2.978M	5	5	2	0	29.98
2.978M 2.807	5	3 -7	0 1	2	29.98 31.85
2.007	J	,	1	1	31.03
2.759	1	4	0	2	32.43
2.705	18	8	0	0	33.09
2.649M	19	2	3	0	33.81
2.649M	,	5 8	2	1	33.81
2.567M	4	8	1	0	34.92
2.567M		-6	1	2	34.92
2.556M	4	3	3	0	35.08
2.556M	0	7	1	1	35.08
2.522	2	-8 5	1	1	35.57
2.432	3	5	1	2	36.93
2.411M	1L	- 7	2	1	37.26
2.411M	-	3	2	2	37.26
2.347	5 3	6	0	2	38.32
2.313M 2.313M	3	8 5	1 3	1 0	38.90 38.90
2.31311		J	J	U	30.70

ſ		I ^{rel}				(-)
	d(A)			hk	L	2θ(°)
l		$\sigma = \pm 3$				
ı	2.283	1L	-9	1	1	39.43
ı	2.250	4	7	2	1	40.04
j	2.163M	2	10	0	0	41.72
١	2.163M		5	2	2	41.72
1	2.133M	3	-6	3	1	42.35
1	0.1001		_		_	/ O O O O
	2.133M	^	2	1	3	42.35
1	2.107 2.092	2 3	9 10	1	1 0	42.89 43.22
ı	2.075M	6	2	3	2	43.59
ı	2.075M	U	9	2	0	43.59
١	2.07511			_	Ū	43.33
	2.057M	28	-9	2	1	43.99
	2.057M		3	1	3	43.99
	2.054	25	-9	1	2	44.05
	2.034	24	-1	2	3	44.51
	2.004M	9	8	0	2	45.22
ı	0.00/M		0	2	^	/F 20
1	2.004M	/.	-8	2	2	45.22 45.58
	1.989 1.924+	4 7	1 8	3	0	47.20
ı	1.924+	,	2	4	1	47.20
	1.912+	5	-11	1	1	47.52
	1.512	3		•	•	.,.5.
	1.912+		-10	1	2	47.52
ı	1.803	. 3	12	0	0	50.59
1	1.783+	. 9	11	1	1	51.19
	1.783+		6	4	0	51.19
	1.768	7	0	4	2	51.67
	1.763	6	-3	3	3	51.83
ı	1.750	9	5	2	3	52.23
1	1.729	8	-4	0	4	52.91
	1.725	7	2	4	2	53.06
	1.717+	4	2	3	3	53.30
						FO 0.5
	1.717+	,	-4	4	2	53.30
	1.701	4	-12	0	2	53.85 54.52
	1.682	5 4	2 1	0	4	54.52 54.60
	1.679M 1.679M	4	-5	1	2	54.60 54.60
	1.0/911		-5	7	2	34.00
	1.669M	5	-10	1	3	54.96
	1.669M		11	2	1	54.96
	1.6484M	4	-9	2	3	55.72
	1.6484M		2	1	4	55.72
	1.6338M	7	8	4	0	56.26
	1 (000)		,	,	^	56.06
	1.6338M	^	- 6	4	2	56.26
	1.5962+	2	10	2	2	57.71
	1.5962+ 1.5448+	1.	-10 -4	3	2	57.71
	1.5448+	1L	-4 6	5 4	1 2	59.82 59.82
	1.34401		U	4	2	33.02

Synonyms	d(A)	_T rel	hkl	2θ(°)
1. Potassium trihydrogen oxalate dihydrate	a(A)	$\sigma = \pm 3$	IIKK	20(-)
2. Potassium tetroxalate		0 = ±3		*
CAC magistry as	4.841	14	0 1 1	18.31
CAS registry no. 6100-20-5	4.767	5	-1 -1 1	18.60
0100-20-3	4.451	13	0 -2 1	19.93
Sample	4.367	3	-1 2 0	20.32
NBS Standard Reference Material #189.	4.197	3	1 - 1 1	21.15
NDD DESIGNIC NETERICE INSECTION 107.	7.137	3		21.15
Color	3.943	3	1 2 0	22.53
Colorless	3.828	2	-1 -2 1	23.22
	3.626	1	1 1 1	24.53
Structure	3.597	2	0 2 1	24.73
Triclinic, $\overrightarrow{P1}$ (2), $Z = 2$. The structure was determined by Haas (1964).	3.458	5	-1 2 1	25.74
	3.446	5	0 3 0	25.83
Lattice constants of this sample	3.440	4	2 0 0	25.88
$a = 7.031(2) \mathring{A}$	3.376	3	-2 1 0	26.38
b = 10.611(4)	3.321	3	0 -3 1	26.82
c = 6.367(2)	3.283	4	-2 0 1	27.14
$\alpha = 101.36(3)^{\circ}$	3.143	100	-2 -1 1	28.37
$\beta = 100.18(2)$	3.143	76	0 -1 2	28.56
$\gamma = 93.82(2)$	3.123	28	0 -1 2	28.30
	3.041	7	-1 -1 2	29.12
a/b = 0.6626	2.990	7	1 -3 1	29.86
c/b = 0.6000	2.,,,,	•	- 5 -	
Volume	2.963M	7	1 2 1	30.14
Volume o 455.8 A ³	2.963M		1 3 0	30.14
4JJ.0 M	2.921	1	0 -2 2	30.58
Density	2.820	8	-1 -2 2	31.71
(calculated) 1.852 g/cm ³	2.790	27	-2 -2 1	32.05
Figure of merit	2.783	22	-1 1 2	32.14
$F_{30} = 40.6(0.017,44)$	2.757	9	-2 2 1	32.45
- 30	2.658	7	2 -2 1	33.69
Reference intensity	2.578M	12	0 -3 2	34.77
$I/I_{corundum} = 1.14(7)$	2.578M		1 -2 2	34.77
Additional pattern	2.544	4	-2 0 2	35.25
1. PDF card 14-845 [Dow Chemical Co., Midland,	2.531	7 5	-2 -1 2 -1 4 0	35.44 35.76
Michigan]	2.509 2.483	3	-1 -4 0 -1 -3 2	36.15
	2.463 2.442M	20	-1 -3 2 -1 2 2	36.78
Reference	2.44211	20	1 2 2	30.70
Haas, D. J. (1964). Acta Crystallogr. <u>17</u> , 1511.	2.442M		1 -4 1	36.78
	2.426	6	1 3 1	37.03
	2.412	6	1 1 2	37.25
· · · · · · · · · · · · · · · · · · ·	2.394	4	-2 -3 1	37.54
$CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$	2.384	5	2 -3 1	37.70
Internal standard W, a = 3.16524 Å	2.361	13	-2 3 1	38.08
0 401	2.348	8	1 -3 2	38.30
$d(A)$ I^{1e1} $hk\ell$ $2\theta(^{\circ})$	2.342	6	1 4 0	38.40
$\sigma = \pm 3$	2.316	3	2 3 0 2 2 1	38.85
	2.281	7	2 2 1	39.48
6.13 9 0 0 1 14.43	2.257	2	-3 1 1	39.91
6.04 8 -1 1 0 14.66	2.232	6	-3 -1 1	40.37
5.85 1 0-1 1 15.14	2.199	3	-2 2 2	41.01
5.47 1 1 1 0 16.18	2.184	5	-3 2 0	41.30
5.101 2 -1 0 1 17.37		7	-1 -4 2	42.07
3.101	2.146		1 7 4	72.07

Potassium Hydrogen Oxalate Hydrate, $C_4H_3KO_8 \cdot 2H_2O$ - (continued)

d(Å)	I^{rel} $\sigma = \pm 3$	hkl	2θ(°)
2.100M	2	2 -2 2	43.04
2.100M		0 -5 1	43.04
2.094	3	2 0 2	43.17
2.083	2	-3 -2 1	43.41
2.068M	4	-1 0 3	43.73
2.068M		0 5 0	43.73
2.053	5	0 -2 3	44.07
2.049	3	3 -1 1	44.16
2.040M	3	0 0 3	44.36
2.040M		-1 5 0	44.36
2.015	2	-3 -1 2	44.94
2.009	2	-3 3 0	45.09
1.998	7	3 -2 1	45.35

1. Potassium niobate

CAS registry no. 12030-85-2

Sample

The sample was a Johnson Matthey chemical obtained from Ventron Corp., Danvers, MA.

Major impurities

The manufacturer's spectrographic analysis showed ≈ 3 ppm silicon.

Color

Colorless

Structure

Orthorhombic, Cm2m (38), Z = 2, isostructural with the distorted perovskite form of BaTiO₃. The structure was determined by Katz and Megaw [1954].

Lattice constants of this sample

a = 5.6950(4) Ab = 5.7213(3)

c = 3.9739(2)

a/b = 0.9954c/b = 0.6946

Volume 0 129.48 A³

Density

(calculated) 4.167 g/cm³

Figure of merit

 $F_{30} = 96.0(0.009,35)$

Reference intensity

 $I/I_{corundum} = 5.26(12)$

Polymorphism

Potassium niobium oxide crystallizes in three modifications, orthorhombic at room temperature, changing to tetragonal at about 255 °C and cubic near 435 °C [Wood, 1951].

Additional pattern

1. PDF card 9-156 [Wood, priv. comm.]

References

Katz, L. and Megaw, H. D. (1967). Acta Crystallogr. <u>22</u>, 639.

Wood, E. A. (1951). Acta Crystallogr. 4, 353.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C					
0		ard W	, a	= 3.16524 A	
d(A)	I ^{rel}	h	kl	2θ(°)	
	$\sigma = \pm 1$				
4.035 3.973	47 22	1 0	1 0		
2.859	36	0		31.26	
2.848 2.832	46 100	2 1	0 0		
2.322 2.0180	1 33	0 2	2 1		
1.9866	16	0	0 2	45.63	
1.8081	3 9	1 2	3 (2 1		
	-				
1.7831 1.6462	6 15	1 1	1 2 3 1		
1.6413	19	3	1 3	55.98	
1.6314 1.6296	11 6	0 2	2 2 0 2	2 56.35 2 56.42	
1.4305 1.4239	2 4	0 4	4 (
1.4160	13	2	2 2	65.91	
1.3458M 1.3458M	1	0	4 1		
1.3405	1	4	0 1	70.15	
1.3371	2	1	3 2	70.35	
1.3347 1.3249	2 1L	3	1 2 0 3		
1.2782	2	2	4 (
1.2746M	7	4	2 (
1.2746M 1.2586	4	3 1	3 1 1		
1.2169	1L	2	4 1	78.54	
1.2137	1L	4	2	78.79	
1.2020	1L	0	2 3	79.71	
1.1610 1.1576	2 3	0 4	2 3 4 2 0 2	83.13 2 83.43	
1.1221	1L	1	5 (86.70	
1.1170	1 L	5	1 (
1.1142	1 L 1 L	3 2	3 2 3		
1.1075	1	1	5	91.03	
1.0751M 1.0751M	3	5 2	1 3		
1.0727	3 3	4	2 2 3 3	91.79 92.24	
1.0674	2	3	1 3	92.38	
1.0091 .9934	1 1 L	4 0	4 (

Potassium Niobium Oxide, KNbO_3 - (continued)

d(A)	I ^{rel}	hkl			2θ(°)
	$\sigma = \pm 1$				
.9801	1L	3	5	0	103.62
.9780M	1L	4	4	1	103.93
.9780M		5	3	0	103.93
. 9769	1L	1	5	2	104.10
.9738	1L	5	1	2	104.57
.9696	1L	4	0	3	105.20
.9646	1L	1	1	4	105.99
.9534	1L	0	6	0	107.79
.9514	1	3	5	1	108.13
.9494M	2	5	3	1	108.46
.9494M		6	0	0	108.46
.9438	1	3	3	3	109.41
.9381	1	2	0	4	110.40
.9272	1L	0	6	1	112.35
.9231	1L	6	0	1	113.12
.9197	1L	2	4	3	113.76

1. Potassium persulfate

CAS registry no. 7727-21-1

Sample

The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ. and was recrystallized from an aqueous solution.

Color

Colorless

Structure

Triclinic, Z = 1 (assuming a density near 2.5). The cell was obtained by V. Himes using a single crystal on a diffractometer. The cell was confirmed by the Visser program [1969]. Two somewhat different triclinic cells were reported in the literature [Keen, 1935 and Gerstäcker et al., 1928]. Our data did not index on either of these cells.

Lattice constants of this sample

a = 5.514(2) Ab = 7.038(2)c = 5.116(2) $\alpha = 106.11(2)^{\circ}$ $\beta = 90.15(3)$ y = 106.30(3)

a/b = 0.7835c/b = 0.7269

Volume 182.38 Å^3

Density

(calculated) 2.461 g/cm³ 2.45 g/cm^3 (measured)

Figures of merit

 $F_{30} = 34.9(0.016,52)$ $M_{20} = 27.3$

Reference intensity

 $I/I_{corundum} = 1.31(7)$

Additional pattern

1. PDF card 12-483 [Institute of Physics, University College, Cardiff, Wales].

References

Gerstäcker, A., Möller, H., and Reis, A. (1928). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 66, 421.

Keen, R. C. (1935). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 91,

Visser, J. W. (1969). J. Appl. Crystallogr.

Internal standard Si, a = 5.43088 Å $ \frac{d(\mathring{A})}{\sigma} = \frac{1}{4} $ $ \frac{rel}{\sigma} = \frac{1}{4} $ $ \frac{1}{rel} = \frac{1}{4} $ $ \frac{1}{4} = \frac{1}{4}$	$CuK\alpha_1 \lambda = 1.540598 A; temp. 25\pm1 °C$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inter	Internal standard Si, a = 5.43088 Å					
$\sigma = \pm 4$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		I ^{rel}	hkl	2θ(°)			
4.892							
4.892							
4.847 20 -1 1 0 -1 19.27 3.750 9 -1 0 -1 19.27 3.750 9 -1 0 1 19.27 3.750 9 -1 0 1 23.71 3.699 38 1 -1 1 24.04 3.603 4 1 1 0 24.69 3.443 52 1 0 1 25.86 3.232M 100 0 2 0 27.58 3.232M -1 1 1 27.27 3.153 3 0 -2 1 28.28 3.025 11 1 -2 1 29.50 2.736 14 -2 1 0 32.71 2.634M 9 1 1 1 34.01 2.548 10 0 -1 2 35.20 2.466 22 -1 -2 1 36.40 2.397 5 0 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>							
4.602 1L							
3.750 9							
3.603	1						
3.603	3.699	38	1 -1	1 24.04			
3.268							
3.232M 100 0 2 0 27.58 3.232M -1 1 1 27.58 3.153 3 0 -2 1 28.28 3.025 11 1 -2 1 29.50 2.736 14 -2 1 0 32.71 2.634M 9 1 1 1 34.01 2.634M 2 0 0 34.01 2.548 10 0 -1 2 35.20 2.466 22 -1 -2 1 36.40 2.419 10 -2 2 0 37.13 2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.18 2.297+ 2 -2 1 39.18 2.297+ 2 -2 1 39.18 2.297+ 2 -2 1 39.18 2.297+ 2 -2 1 39.62 2.273M -1 -3 1 39.62 2.273M -1 -3 1 40.52 2.239M 2 2 0 1 40.25 2.239M 2 1 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.298 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 7 -2 3 0 45.91 1.975M 7 -2 3 0 45.91 1.975M 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
3.232M							
3.153 3	3.232M	100	0 2	0 27.58			
3.025		•					
2.736 14 -2 1 0 32.71 2.634M 9 1 1 1 34.01 2.634M 2 0 0 34.01 2.548 10 0 -1 2 35.20 2.466 22 -1 -2 1 36.40 2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.62 2.273M 3 1 -3 1 39.62 2.273M 2 2 0 1 40.25 2.239M 2 2 0 1 40.25 2.239M 2 2 0 1 40.52 2.24M 1 0 -3 1 40.52 2.154 3 0 3 0 41.9							
2.634M 9 1 1 1 34.01 2.634M 2 0 0 34.01 2.548 10 0 -1 2 35.20 2.466 22 -1 -2 1 36.40 2.419 10 -2 2 0 37.13 2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.62 2.273M 1 -3 1 40.25 2.239M 2 2 0 1 40.25 2.239M 2 2 0 1 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 <							
2.548 10 0 -1 2 35.20 2.466 22 -1 -2 1 36.40 2.419 10 -2 2 0 37.13 2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.273M 3 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M 2 2 0 1 40.25 2.239M 2 1 0 40.25 2.224M 1 0 -3 1 40.52 2.24M 2 1 0 40.52 2.24M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 -2 2 49.14 1.844 1 1 2 49.39 1.800 7 2 2 0 50.							
2.548 10 0 -1 2 35.20 2.466 22 -1 -2 1 36.40 2.419 10 -2 2 0 37.13 2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.273M 3 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M 2 2 0 1 40.25 2.239M 2 1 0 40.25 2.224M 1 0 -3 1 40.52 2.24M 2 1 0 40.52 2.24M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 -2 2 49.14 1.844 1 1 2 49.39 1.800 7 2 2 0 50.	2.634M		2 0	0 34.01			
2.419 10 -2 2 0 37.13 2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.62 2.273M 3 1 -3 1 39.62 2.239M 2 2 0 1 40.25 2.224M 1 0 -3 1 40.52 2.24M 2 1 0 41.90 2.098 1 0 1 2 43.08 </td <td></td> <td>10</td> <td>0 -1</td> <td></td> <td></td>		10	0 -1				
2.397 5 0 2 1 37.49 2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2							
2.358 3 -2 1 1 38.14 2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.18 2.273M 3 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.869 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
2.315 3 1 -1 2 38.87 2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.18 2.273M 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14	2.397	5	0 2	1 37.49)		
2.297+ 5 -1 0 2 39.18 2.297+ 2 -2 1 39.18 2.273M 3 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 -3 1 40.52 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 -3 1 40.52 2.224M 3 0 3 0 41.90 40.52 2.154 3 0 3 0 41.90 40.52 2.154 3 0 3 0 41.90 43.08 41.90 2.098 1 0 1 2 1 45.42 47.22 47.91 47.91 47.91 47.91 47.91 <		3					
2.297+ 2 -2 1 39.18 2.273M 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
2.273M 3 1 -3 1 39.62 2.273M -1 -1 2 39.62 2.239M 2 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14		J					
2.239M 2 2 0 1 40.25 2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14		3					
2.239M -1 3 0 40.25 2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14	2.273M		-1 -1	2 39.62	2		
2.224M 1 0 -3 1 40.52 2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14		2					
2.224M 2 1 0 40.52 2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
2.154 3 0 3 0 41.90 2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14		1					
2.098 1 0 1 2 43.08 1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14	2.22411		2 1				
1.995 5 1 2 1 45.42 1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
1.975M 7 -2 3 0 45.91 1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
1.975M 2 -3 1 45.91 1.923 10 1 -3 2 47.22 1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14			1 Z				
1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14		,	2 -3				
1.917 4 0 -3 2 47.39 1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14	1 923	10	1 -3	2 47.22	2		
1.881 7 -1 -3 1 48.35 1.858 2 -1 3 1 48.98 1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
1.853 2 2 -2 2 49.14 1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14	1.881	7	-1 -3	1 48.35	5		
1.844 1 1 1 2 49.39 1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
1.809 5 -2 -1 2 50.40 1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14	1.853	2	2 -2	2 49.14	+		
1.800 7 2 2 0 50.66 1.753 2 1 -4 1 52.14							
1.753 2 1 -4 1 52.14							
1./11 3 3-2 1 33.31	1.711	3	3 -2	1 53.51			

Potassium Sulfate, $K_2S_2O_8$ - (continued)

d(A)	I^{rel} $\sigma = \pm 4$	hkl	2θ(°)
1.6338M 1.6338M	3	-3 2 1 -2 -2 2	56.26 56.26
1.6154M 1.6154M	8	1 -2 3 1 -1 3	56.96 56.96
1.6138M 1.6138M	4	1 -4 2	57.02 57.02

CAS registry no. 12007-34-0

Sample

The sample was obtained from Cerac, Menomonee Falls, WI.

 ${\tt Color}$

Metallic gray

Structure

Hexagonal, P6/mmm (191) Z = 1. The structure was qualitatively done by Zhuravlev and Stepanova [1958].

Lattice constants of this sample

a = 3.14573(12) A

c = 3.5175(2)

c/a = 1.1182

Volume 30.145 A³

Density

(calculated) 3.667 g/cm³

Figure of merit

 $F_{19} = 73.3(0.011,23)$

Additional pattern

1. PDF card 11-527 [Zhuravlev and Stepanova, 1958].

References

Zhuravlev, N. N. and Stepanova, A. A. (1958). Kristallografiya 3, 83.

	$CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$							
	Internal standard W, a = 3.16524 Å							
Ì	d(A)	I ^{rel}		hkl		2θ(°)		
		$\sigma = \pm 2$						
	3.517	17	0	0	1	25.30		
	2.725	51	1	0	0	32.84		
	2.153	100	1	0	1	41.92		
	1.7594	10	0	0	2	51.93		
i	1.5733	18	1	1	0	58.63		
1	1.4774	13	1	0	2	62.85		
	1.4358	8	1	1	1	64.89		
	1.3619	5	2	0	0	68.89		
	1.2703	12	2	0	1	74.66		
	1.1721M	12	0	0	3	82.17		
	1.1721M		1	1	2	82.17		
	1.0768M	8	1	0	3	91.34		
	1.0768M	0	2	0	2	91.34		
	1.0297	3	2	1	0	96.85		
	.9883	8	2	1	1	102.42		
	.9401	1L	1	1	3	110.05		
	.9081	3	3	0	0	116.05		
	.8885M	6	2	0	3	120.21		
	.8885M		2	1	3 2	120.21		
	.8792M	2	0	0	4	122.35		
	.8792M		3	0	1	122.35		
	.8369	2	1	0	4	133.99		
	.8069	2 3	3	0	2	145.36		

CAS registry no. 7784-03-4

Sample

The sample was obtained from Ventron Corp. (Alfa), Danvers, MA.

Vivid yellow

Structure

Tetragonal, $I\overline{4}$ (82), Z = 2, pseudocubic. The structure of β-Ag₂HgI₄ was determined by Hahn et al. [1955]. A cell with c/2 was reported by Ketelaar [1931] and a cell with 2a was reported by Frevel and North [1950].

Lattice constants of this sample

a = 6.3302(8) Ac = 12.624(2)

c/a = 1.9942

Volume 505.88 A3

Density

(calculated) 6.069 g/cm³

Figure of merit $F_{30} = 47.1(0.016,41)$

Reference intensity $I/I_{corundum} = 5.60(10)$

Polymorphism

Above 60 °C, Ag2HgI4 is cubic [Ketelaar, 1931]. Otsubo [1966] reports another form of Ag2HgI4 as hexagonal and stable above 165 °C.

Additional patterns

- 1. PDF card 3-0949 [Ketelaar, 1931]
- 2. PDF card 4-0442 [Frevel and North, 1950]
- PDF card 18-1183 [Hahn et al., 1955]

References

Frevel, L. K. and North, P. P. (1950). J. Appl. Phys. <u>21</u>, 1038.

Hahn, H., Frank, G., and Klingler, W. (1955). Z. Anorg. Allgem. Chem. 279, 271. Ketelaar, J. A. A. (1931). Z. Kristallogr.

Kristallgeometrie Kristallphys.

Kristallchem. <u>80</u>, 192. Otsubo, Y., Nitta, A., Kaneko, M., Iwata, Y., and Ueki, A. (1966). Kogyo Kagaku Zasshi 69, 1716.

	λ = 1.540			0
Inter	nal standa	ard Si, a	= 5.43	3088 A
d(Å)	I ^{rel} σ = ±1	hk <i>l</i>	,	2θ(°)
6.30	3	0 0	2	14.05
5.64	6	1 0	1	15.69
4.471	6	1 1	0	19.84
3.650	100	1 1	2	24.37
3.502	5	1 0	3	25.41
3.163	1L	2 0	0	28.19
3.156	1L	0 0	4	28.25
2.828	5	2 0	2	31.61
2.761	5	2 1	1	32.40
2.578	4	1 1	4	34.77
2.347M 2.347M 2.236 2.103 2.081	3 45 2 2	2 1 1 0 2 0 0 0 3 0	3 5 4 6 1	38.32 38.32 40.31 42.97 43.46
2.002	1	3 1	0	45.27
1.908	19	3 1	2	47.62
1.904	18	1 1	6	47.72
1.884	1	2 1	5	48.26
1.7385	1L	3 2	1	52.60
1.7340	1L	1 0	7	52.75
1.6907	1L	3 1	4	54.21
1.6203	1	3 2	3	56.77
1.5829	3	4 0	0	58.24
1.5782	3	0 0	8	58.43
1.5332	1	2 2	6	60.32
1.5240	1L	4 1	1	60.72
1.5206	1L	2 1	7	60.87
1.4887	1L	1 1	8	62.32
1.4508	4	3 1	6	64.14
1.4416M 1.4416M 1.3813 1.3494 1.3119	2 1L 1L 1L	4 1 3 2 4 2 3 3 4 1	3 5 2 4 5	64.60 64.60 67.79 69.62 71.91
1.2917	4	4 2	4	73.22
1.2901	3	2 2	8	73.32
1.2643	1L	4 0	6	75.07

1. Sodium perchlorate hydrate

CAS registry no. 7791-07-3

Sample

The sample was recrystallized from reagent material received from the Fisher Scientific Co., Fair Lawn, NJ. The crystals were very unstable, changing readily to the anhydrous phase and back again depending on the atmospheric relative humidity.

*Because of the sample's instability, the intensities were calculated from the structure data given by Berglund et al. [1975].

Color

Colorless

Structure

Monoclinic, C2/c (15), Z = 8. The structure was refined by Berglund et al. [1975].

Lattice constants of this sample

a = 15.555(3) Ab = 5.5436(9)

c = 11.063(3)

 $\beta = 110.70(2)^{\circ}$

a/b = 2.8059c/b = 1.9956

Volume 892.4 A³

Density

(calculated) 2.091 g/cm³

Figure of merit

 $\bar{F}_{30} = 26.0 (0.015,78)$

Reference intensity

I/I = 1.34 (calculated from the structural data)

Additional pattern

 PDF card 28-1071 [Hanawalt et al., [1938]

References

Berglund, B., Thomas, J. O., and Tellgren, R. (1975). Acta Crystallogr. <u>B31</u>, 1842. Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

d(Å)	ı*		hk	l	2θ(°)
	-·····································				
5.18M	44	1	1	0	17.10
5.18M		0	0	2	17.10
.894	2	-1	1	1	18.11
4.421	6	1	1	1	20.07
3.648+	77	2	0	2	24.38
3.648+		3	1	0	24.38
3.445M	100	1	1	2	25.84
3.445M		-3	1	2	25.84
3.187	5	3	1	1	27.97
2.928	3	-3	1	3	30.51
2.771	9	0	2	0	32.28
2.764	11	-2	0	4	32.36
2.704	3	-5	1	1	33.06
2.666	4 .	-3 3	1	2	33.59
2.660	3	- 5	1	2	33.66
2.000	J		•	_	33.00
2.592M	1	-2	2	1	34.58
2.592M		2	2	0	34.58
2.585M	1L	0	0	4	34.67
2.585M		-4	0	4	34.67
2.577M	1L	4	0	2	34.78
2.577M		5	1	0	34.78
2.467	1	- 5	1	3	36.39
2.443+	5	0	2	2	36.76
2.443+		-2	2	2	36.76
2.437	5	-3	1	4	36.86
2.228	1	3	1	3	40.45
2.205+	16	4	2	ő	40.90
2.205+	10	2	0	4	40.90
2.162	1	ō	2	3	41.75
2.063	4	5	1	2	43.85
			-		.5.55
2.060	3	-7	1	2	43.92
2.040	1	-7	1	1	44.36
2.011	1	-1	1	5	45.04
1.958M	1	-2	2	4	46.33
1.958M		2	2	3	46.33
1.947M	1	6	0	2	46.61
1.947M		7	1	0	46.61
1.885M	2	-6	2	2	48.23
1.885M		-6	2	1	48.23
1.844	1L	1	1	5	49.39
1.825M	7	4	0	4	49.93
1.825M	•	6	2	ō	49.93
1.820M	8	-8	0	4	50.07
1.820M	9	-1	3	1	50.07
1.811	1L	5	1	3	50.35
1 700	17	-	^	1	E0 00
1.792	1L	1	3	1	50.92
1.739	2 9	-3 0	3	1	52.57 53.08
					7 7 118
1.724M 1.724M	9	-6	2	4	53.08

 $CuK\alpha_1 \lambda = 1.540598 A$; temp. 25±1 °C

d(Å)	ı*		hk	e 2	2θ(°)
1.722M		6	2	1	53.16
1.7040M	1	1	3	2	53.75
1.7040M		-3	3	2	53.75
1.7017M	3	-1	1	6	53.83
1.7017M	_	-4	2	5	53.83
1.6691	1	3	3	1	54.97
1.6497M	1L	7	1	2	55.67
1.6497M		-1	3	3	55.67
1.5919	1	-8	2	2	57.88
1.5794M	1	3	3	2	58.38
		_			
1.5794M		- 5	3	2	58.38
1.5514M	1L	9	1	0	59.54
1.5514M		-10	0	2	59.54
1.5254M	1	2	2	5	60.66
1.5254M		4	2	4	60.66
1.5202	2	8	2	0	60.89
1.5126	1L	-9	1	5	61.23
1.5006M	1L	5	3	1	61.77
1.5006M		-5	1	7	61.77
1.4199M	2	3	1	6	65.71
	_		_	_	
1.4199M		-7	3	2	65.71
1.4162	3	-3	3	5	65.90
1.3860	1	Ō	4	0	67.53
1.3816M	2	7	3	0	67.77
1.3816M	_	4	0	6	67.77
1.5010.1		_		Ŭ	07.77
1.3734	1	0	4	1	68.23
1.3631	1	-11	1	2	68.82
1.3543+	1	7	1	4	69.33
1.3543+		8	2	2	69.33
1.3385+	1L	-2	4	2	70.27
					-
1.3385+		2	4	1	70.27
1.3342M	1	-11	1	1	70.53
1.3342M		6	2	4	70.53
1.3309M	1	-10	2	4	70.73
1.3309M		-10	2	1	70.73
1.2953M	1	-4	4	2	72.98
1.2953M		4	4	0	72.98
l					

1. Monosodium glutamate hydrate

2. Accent

CAS registry no. 142-47-2

Sample

The sample was manufactured by the Ajinomoto Co., Japan, and purchased as a food additive. It was recrystallized from a mixture of water and ethanol.

Color

Colorless

Structure

Orthorhombic, $P2_12_12_1(19)$, Z = 8. The unit cell and space group were determined by Uno [1952].

Lattice constants of this sample

a = 15.235(3) A b = 17.937(4)

c = 5.667(2)

a/b = 0.8494c/b = 0.3104

Volume o 1521.3 A³

Density

(calculated) 1.634 g/cm³

Figure of merit

 $F_{30} = 45.6(0.014,48)$

Reference intensity
I/I = 0.35(2)

Additional pattern

 PDF card 18-1904 [Institute of Physics, University College, Cardiff, Wales]

Reference

Uno, T., (1952). Yokugaku Zasshi (J. Pharm. Soc. Japan) 72, 26.

 $CuK\alpha_1 \lambda = 1.540598 \text{ A}$; temp. 25±1 °C Internal standard Si, a = 5.43088 A Irel d(A) hkl 2θ(°) $\sigma = \pm 2$ 11.62 3 1 1 0 7.60 8.95 10 0 0 9.87 7.72 10 1 2 0 11.46 2 0 7.61 4 0 11.62 3 2 1 7.02 0 12.60 5.80 2 2 15 0 15.27 1 5.562 5 3 0 15.92 5.024 8 17.64 1 1 4.886 2 3 1 0 18.14 4.697 4 2 3 0 18.88 4.519 95 1 19.63 2 1 4.416 75 3 2 0 20.09 4.358 39 2 1 1 20.36 4.298 20.65 6 1 0 4.017 38 2 22.11 1 24 22.58 3.935 1 3 1 2 4 23.02 3.860 32 0 88 4 0 3.807 0 23.35 3.728 33 4 1 0 23.85 3.589 2 3 33 24.79 100 4 2 0 25.39 3.505 3.460 17 3 2 1 25.73 3.402 18 1 4 1 26.17 3.361 12 3 4 0 26.50 3.209 4 3 0 27.78 24 3.175M 74 3 3 1 28.08 28.08 3.175M 2 1 3.141 19 0 1 28.39 3.096 19 1 1 28.81 2.958 16 1 5 30.19 2.931M 8 1 6 n 30.47 5 0 30.47 2.931M 3 2.901 19 4 4 0 30.80 3 4 2.879 37 1 31.04 2.802 16 2 5 31.91 0 2 2.784+ 8 0 32.12 2 0 32.12 2.784 +6 32.97 2.715 2 5 3 0 2 33.08 2.706 2 1 1 9 33.90 2.642 5 1 0 34.02 2.633 14 6 1 2.612M 2 0 2 34.30 25 4 5 0 34.30 2.612M

34.57

34.57

2.593M

2.593M

29

1 6

3 5

1

Sodium L(+)-Glutamate Hydrate, $C_5H_8NNaO_4 \cdot H_2O$ - (continued)

d(Å)	Irel	hkl	2θ(°)	
	$\sigma = \pm 2$,	
_				
2.562	7	5 2	1 35.00	
2.525M	9	1 7	0 35.53	
2.525M		0 3	2 35.53	
2.521	.9	5 4	0 35.58	
2.489M	26	1 3	2 36.06	
2.489M		2 6	1 36.06	
2.441+	16	6 2	0 36.79	
2.441+		3 0	2 36.79	
2.362	11	4 5	1 38.06	
2.356	12	3 2	2 38.16	
2.330	12	3 2	2 30.10	
2.352	17	4 6	0 38.24	
2.338+	9	3 6	1 38.48	
2.338+		6 3	0 38.48	
2.310	8	6 0	1 38.96	
2.301	16	1 7	1 39.11	
			-	
2.296	17	5 4	1 39.21	
2.258M	16	3 3	2 39.90	
2.258M		2 4	2 39.90	
2.237	24	6 2	1 40.28	
2.230	22	4 1	2 40.42	
2.230	22	7 1	2 40.42	
2.227	19	2 7	1 40.48	
2.200	12	0 5	2 41.00	
2.167	41	4 6	1 41.65	
2.144M	6	3 4	2 42.12	
2.144H 2.144M	U	5 5	1 42.12	
2.14411		3 3	1 42.12	
2.135	4	5 6	0 42.29	
2.126	4	4 7	0 42.49	
2.115M	6	3 7	1 42.71	
2.115M		7 2	0 42.71	
2.060	5	1 8	1 43.92	
2.052	9	3 8	0 44.10	
2.037	4	0 6	2 44.44	
1.994	7	5 6	1 45.46	
1.987	5	4 7	1 45.62	
1.959	7	7 4	0 46.31	

1. Sodium binoxalate hydrate

2. Sodium acid oxalate hydrate

CAS registry no. 16009-94-2

Sample

The sample was obtained from Fisher Scientific Co., Fair Lawn, N. J. It was recrystallized from a hot aqueous solution to which a small amount of $\rm H_2C_2O_4$ was added. The sample was mounted in Canada Balsam for the intensity measurements. Since the material exhibited strong cleavage and a tendency to lose $\rm H_2O$, the intensity determinations may be subject to some error.

Color

Colorless

Structure

Triclinic, $P\overline{1}$ (2), Z = 2 [Hendricks, 1935].

Lattice constants of this sample

a = 6.516(2) Å

b = 6.675(2)c = 5.708(2)

c = 5.708(2) $\alpha = 95.06(4)^{\circ}$

 $\beta = 109.96(4)$

y = 75.03(2)

a/b = 0.9762

c/b = 0.8551

Volume 0 225.43 Å³

Density

(calculated) 1.916 g/cm³

Figure of merit

 $F_{30} = 26.2(0.016,71)$

Additional pattern

1. PDF card 14-755 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457. Hendricks, S. B. (1935). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 92, 301.

	λ = 1.54059			0	
	rnal standa	rd W, a	= 3.	16524 A	
d(A)	I ^{rel} σ = ±3	hk	Q	2θ(°)	
6.44	4	0 1	0	13.73	
5.93 5.36	1L 14	1 0 0 0		14.92	
5.027	3	1 1		16.53 17.63	
4.862	14	-1 0		18.23	
4.318	11	-1 -1		20.55	
4.132M 4.132M	10	0 -1 0 1		21.49 21.49	
3.919	10	-1 1		22.67	
3.226	14	0 2	. 0	27.63	
3.179	12	1 2		28.05	
3.084 2.987	4 32	-2 -1 2 1		28.93 29.89	
2.968	100	2 0		30.08	
2.683	21	0 0	2	33.37	
2.583	6	-1 2	. 0	34.70	
2.568	1L	-2 -2		34.91	
2.530 2.482	7 24	-2 1 -1 1		35.45 36.16	
2.477+	18	0 -1		36.24	
2.477+		0 1		36.24	
2.442	8	-2 -1		36.77	
2.306 2.256	3 5	2 1 -1 -2		39.03 39.93	
2.165	8	-3 -1		41.69	
2.131M	9	1 1		42.39	
2.131M		-1 -3		42.39	
2.097 2.063+	6 7	-3 0 2 2		43.10 43.84	
2.063+	Í	0 -2		43.84	
2.012+	2	-3 -2		45.02	
2.012+	_	-1 2		45.02	
1.959 1.906	7 5	-2 2 3 2		46.32 47.67	
1.893	1L	-1 0		48.01	
1.858M	3	-3 1		49.00	
1.858M	,	-1 -1		49.00	
1.835 1.780	4 4	-1 3 -1 1		49.64 51.28	
1.7416M	5	-3 -3		52.50	
1.7416M		2 3		52.50	
1.7270	13	2 0	2	52.98	
1.6852 1.6610	1L	3 0		54.40 55.26	
1.6408	9 2	-3 -3		56.00	

1. Sodium iodate monohydrate

CAS registry no. 22451-04-3

Sample

The sample was crystallized by slow evaporation of an aqueous solution of NaIO₃. The material was somewhat unstable; thus, the intensity measurements may be slightly in error.

Color

Colorless

Structure

Orthorhombic, $P22_12$ (17), Z=8, assuming a density near 2.5. Indexed by use of the Visser program. The space group was assumed, based on the consideration of the absent reflections.

Lattice constants of this sample

a = 9.065(3) Å

b = 16.632(5)c = 7.638(2)

a/b = 0.5450

c/b = 0.4592

Volume 0 1151.6 A³

Density

(calculated) 2.491 g/cm³

Figures of merit

 $F_{30} = 18.7(0.013,120)$

 $M_{20} = 12.2$

Reference intensity

 $I/I_{corundum} = 2.42(14)$

Additional pattern

1. PDF card 1-156 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457. Visser, J. W. (1969). J. Appl. Crystallogr. <u>2</u>, 89.

CuKα ₁	λ = 1.54059	8 Å;	te	mp.	25±1 °C	
	nal standard	Si,	a	= 5.	43088 A	
d(A)	I ^{rel} σ = ±3		hkl		2θ(°)	
6.93 5.836 4.774 3.976 3.792	76 100 25 62 8	0 1 1 2 2	1 0 2 2 1	1 1 1 0	12.77 15.17 18.57 22.34 23.44	
3.441 3.189 3.021 2.971M 2.971M	84 39 85 44	1 2 3 3 1	1 3 0 1 3	2 1 0 0 2	25.87 27.96 29.55 30.05 30.05	
2.919 2.890 2.771M 2.771M 2.661	8 19 20 25	2 1 0 3 3	0 5 6 1 2	2 1 0 1	30.60 30.92 32.28 32.28 33.65	
2.654M 2.654M 2.449 2.391 2.345	13 4 12 9	3 1 1 2 3	3 6 0 4 1	0 0 3 2 2	33.74 33.74 36.67 37.59 38.35	
2.328 2.314 2.279 2.243M 2.243M	3 5 23 11	3 0 3 0 1	4 3 2 6 3	1 3 2 2 3	38.64 38.88 39.51 40.17	
2.201M 2.201M 2.144 2.112 2.023M	4 4 14 6	1 2 2 1 4	7 1 2 4 3	1 3 3 3 1	40.97 40.97 42.11 42.78 44.77	
2.023M 2.017 2.011 1.989 1.969	7 7 5 26	0 0 2 4 1	5 7 6 4 7	3 2 2 0 2	44.77 44.91 45.05 45.56 46.05	
1.930 1.8976M 1.8976M 1.8744 1.8469	7 4 10 4	3 4 0 0 2	5 2 1 6 5	2 2 4 3 3	47.04 47.90 47.90 48.53 49.30	
1.8344 1.8196 1.7708M 1.7708M 1.7497	13 4 11 9	2 4 5 1 2	8 5 2 3 1	1 1 0 4 4	49.66 50.09 51.57 51.57 52.24	
1.7355 1.7218 1.6846	6 7 8	0 2 4	4 2 1	4 4 3	52.70 53.15 54.42	

1. Sodium thiosulfate pentahydrate

CAS registry no. 10102-17-7

Sample

The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ.

Color

Colorless

Structure

Monoclinic, $P2_1/a$ (14), Z = 4. The structure of $Na_2S_2O_3 \cdot 5H_2O$ was determined by Taylor and Beevers [1952].

Lattice constants of this sample

 $a = 7.5361(14) \stackrel{\circ}{A}$

b = 21.595(6)

c = 5.9503(12) $\beta = 103.80(2)^{\circ}$

a/b = 0.3490

c/b = 0.2755

Volume 940.4 A³

Density

(calculated) 1.753 g/cm³

Figure of merit

 $F_{30} = 52.3(0.012,47)$

Additional pattern

 PDF card 13-528 [University College, Cardiff, Wales]

Reference

Taylor, P. G. and Beevers, C. A. (1952). Acta Crystallogr. 5, 341.

CuK α_1	$\lambda = 1.540598$	A; temp	. 25±1	°C
Intern	al standard	M 2 - 3	1652/	٥

١	Internal	standard	W, a	=	3.16	5524 A
	d(A)	I ^{rel} σ = ±:	1	hk	Q.	2θ(°)
	10.79	4	0	2	0	8.19
	6.93	5	1	1	0	12.76
	6.05	19	1	2	0	14.62
	5.775	32	0	0	1	15.33
	5.580	24	0	1	1	15.87
	5.401	100	0	4	0	16.40
	5.125	15	1	3	0	17.29
	5.024	20	-1	1	1	17.64
	4.665	19	-1	2	1	19.01
	4.507	23	0	3	1	19.68
	4.339	5	1	4	0	.20.45
	4.205	28	-1	3	1	21.11
	4.010	4	1	1	1	22.15
	3.945	11	0	4	1	22.52
	3.823	31	1	2	1	23.25
	3.660	35	2	0	0	24.30
	3.601	16	0	6	0	24.70
	3.552	25	1	3	1	25.05
	3.490	16	-2	0	1	25.50
	3.446	27	-2	1	1	25.83
	3.324 3.258M 3.258M 3.141 3.031	46 2 35 2	-2 2 1 -2 2	2 3 4 3 4	1 0 1 1 0	26.80 27.35 27.35 28.39 29.45
	2.957	60	-1	6	1	30.20
	2.911	35	-1	1	2	30.69
	2.864	37	0	1	2	31.20
	2.843	34	1	7	0	31.44
	2.794M	55	2	5	0	32.01
	2.794M 2.721M 2.721M 2.648 2.613	10 1 9	0 0 -1 -1 2	2 7 3 7 3	2 1 2 1 1	32.01 32.89 32.89 33.82 34.29
	2.586	8	-2	0	2	34.66
	2.566	6	2	6	0	34.94
	2.548	6	0	4	2	35.20
	2.532	7	1	8	0	35.42
	2.506	13	-2	6	1	35.80
	2.489 2.451 2.428M 2.428M 2.355	8 47 20 16	2 -3 -1 1	4 1 5 2 3	1 1 2 2 2	36.06 36.64 36.99 36.99 38.19
	2.335M 2.335M 2.275 2.263 2.218M	3 6 10 19	-3 -2 -1 1 -2	3 4 6 4 5	1 2 2 2 2	38.52 38.52 39.58 39.81 40.65

Sodium Sulfate Hydrate, $Na_2S_2O_3 \cdot 5H_2O$ - (continued)

d(Å)	I ^{rel}		hk	0.	2θ(°)
d(h)	$\sigma = \pm 1$		III	~	20()
				-	
2.218M		0	9	1	40.65
2.160M	7	0	10	0	41.78
2.160M		1	5	2	41.78
2.144	3	-3	5	1	42.12
2.137	4	-2	8	1	42.25
2.124	3	3	5	0	42.53
2.100	10	-2	6	2	43.03
2.091	10	-3	2	2	43.23
2.070M	9	1	10	0	43.69
2.070M		1	9	1	43.69
2.036	17	-3	6	1	44.47
2.007M	7	2	2	2	45.13
2.007M		2 2 3	9	0	45.13
1.994M	6		3	1	45.44
1.994M		-1	10	1	45.44
1.978	6	-2	9	1	45.85
1.951	3	-1	2	3	46.51
1.9111+	11	-1	3	3	47.54
1.9111+		-3	5	2	47.54
1.8961M	3	0	2	3	47.94
1.8961M		1	11	0	47.94
1.8784	3	-4	0	1	48.42
1.8604+	4	ó	3	3	48.92
1.8604+		2	10	ő	48.92
1.8466M	7	2	5	2	49.31
1.8466M		0	9	2	49.31
1.8371	18	-2	10	1	49.58
1.8098	10	3	8	0	50.38

CAS registry no. 10022-52-3

Sample

The sample was made by reaction between $SrCO_3$ and H_2BrO_3 .

Color

Colorless

Structure

Monoclinic, $P2_1/n$ (14), Z = 4. The cell was obtained from axial ratios of Groth [1908], assuming Z = 4 and using a density of 3.778 as quoted by Groth [1908]. The space group was assumed from the peak absences.

Lattice constants of this sample

a = 9.375(2) A

b = 7.6205(12)

c = 8.877(2) $\beta = 91.86(2)^{\circ}$

, , , , , , ,

a/b = 1.2302c/b = 1.1648

C/D 1110

Volume 633.8 Å³

Density

(calculated) 3.788 g/cm³

Figure of merit

 $F_{30} = 35.3(0.012,74)$

Reference intensity
I/I = 2.7(2)

Reference

Groth, P. (1908). <u>Chemische Krystallographie</u>
<u>II</u>, (Wilhelm Engelmann, Leipzig, Germany)
p. 113.

	CuKa ₁	$\lambda = 1.540$	598 Å;	te	mp.	25±1	°C
١	Internal	standard !	W, a	= 3	. 16	524 Å	
	d(Å)	I ^{rel} σ = ±3		hkl			2θ(°)
	5.91 5.779 4.687 4.434 3.836	6 33 4 23 12		1 0	1 0		14.97 15.32 18.92 20.01 23.17
	3.811 3.681 3.586 3.515 3.293	32 6 31 20 32	-2	2 1 1 1 2	2		23.32 24.16 24.81 25.32 27.06

d(A)	I ^{rel}	hkl	2θ(°)
u(n)	$\sigma = \pm 3$	IIKZ	20()
	0 - 13		
0.07			
3.275	39	-2 0 2	27.21
3.171	47	2 0 2 2 2 0	28.12
2.956	47		30.21
2.891M	100	0 2 2 3 1 0	30.91
2.891M		3 1 0	30.91
A ===			
2.757	3	0 1 3	32.45
2.484	5	-2 2 2	36.13
2.453	13	1 3 0	36.60
2.445	13	0 3 1	36.72
2.438	11	2 2 2	36.83
2 (00	_	. 0	07.00
2.409	2	-2 1 3	37.30
2.345+	5	2 1 3	38.36
2.345+		-3 2 1	38.36
2.316	16	3 2 1	38.85
2.281	4	-1 2 3	39.47
0.054	_	1 ^ ^	00.0=
2.254	2	1 2 3	39.97
2.217	25	0 0 4	40.66
2.188	8	-4 1 1	41.23
2.173	4	-2 3 1	41.52
2.156M	8	4 1 1	41.86
2 154W		2 2 1	61.00
2.156M	2	2 3 1	41.86
2.138	3	1 3 2	42.23
2.099M	6	-3 1 3	43.07
2.099M		3 2 2	43.07
2.063	1	1 1 4	43.85
2 0/4	2	4 0 2	/// 27
2.044 1.9160+	2 4	4 0 2 2 1 4	44.27 47.41
1.9160+	4	0 2 4	47.41 47.41
1.8931	5	-3 2 3	47.41
1.8237	3 9	1 4 1	49.97
1.0231		- 7 1	43.31
1.8189	11	5 1 0	50.11
1.8145	10		50.24
1.7876	19	-3 3 2 3 3 2	51.05
1.7651	10	2 4 0	51.75
1.7591	10	4 1 3	51.94
1.7509	11	0 4 2	52.20
1.7343+	7	3 1 4	52.74
1.7343+		-2 4 1	52.74
1.7020	9	-5 1 2	53.82
1.6832	1	4 3 1	54.47
1.6649	7	5 1 2	55.12
1.6514	2	-1 3 4	55.61
1.6341M	4	4 2 3	56.25
1.6341M		2 4 2	56.25
1.6043	2	-3 4 1	57.39
3 500		, , ,	F3 ^-
1.5921	3 2	4 3 2	57.87
1.5829	2	-1 4 3	58.24
1.5617M	2	2 3 4	59.11
1.5617M	7	6 0 0 2 2 5	59.11 61.45
1.5077+	7	2 2 5	61.45
1.5077+		5 3 0	61.45
1.50774	2	5 3 0 4 4 0	62.85
4//4	_	7 7 0	02.03

1. Strontium dichromate

Sample

The sample was prepared by heating SrCr₂O₇·3H₂O at 130 °C for 18 hours, followed by heating at 150 °C for 24 hours.

Color

Deep orange yellow

Structure

Tetragonal, $P4_2/nmc$ (137), Z = 8, isostructural with $PbCr_2O_7$. The structure of $SrCr_2O_7$ was determined by Wilhelmi [1967].

Lattice constants of this sample

a = 11.1925(7) Ac = 9.4833(11)

c/a = 0.8473

Volume 0 1188.0 A³

Density

(calculated) 3.395 g/cm³

Figure of merit

 $F_{30} = 72.4(0.010,41)$

Reference intensity

 $I/I_{corundum} = 2.35(8)$

Columbia

Additional pattern
1. PDF card 20-1191 [Wilhelmi, 1967]

Reference

Wilhelmi, K.-A. (1967). Ark. Kemi 26, 149.

ſ	CuKa ₁	λ = 1.54	0598	A;	tem	p. 25±1 °C	
	_					5.43088 Å	
ŀ	d(A)	I ^{rel}			hkl	2θ(°)	
1		$\sigma = \pm 2$!			• ,	
I	7.91	2	1	1	0	11.17	
١	7.91	2 2	1 1	1 0	1	11.17	
1	5.601	5	2	0	0	15.81	
1	4.739	3	0	0	2	18.71	
	4.423	11	2	1	1	20.06	
١	4.070	4	1	1	2	21.82	
١	3.955	2	2	2	0	22.46	
١	3.619 3.538	68 4	2	0	2	24.58 25.15	
۱	3.538	25	3	0	1	25.62	
I	3.443	5 100	2	1	2	25.86 26.87	
1	3.315 3.040M	100 32	3 1	1 0	1 3	26.87 29.36	
1	3.040M	32	2	2	2	29.36	
١	2.950	15	3	2	1	30.27	
1			•	^	2	20 47	
١	2.931 2.836	11 3	3	0	2 2	30.47 31.52	
۱	2.796	2	4	0	0	31.98	
۱	2.751	1	2	Ö	3	32.52	
١	2.673	2	2	1	3	33.50	
	2.636	2	3	3	0	33.98	
۱	2.609	1	4	1	1	34.34	
١	2.596	2	3	2	2	34.52	
١	2.503	9	4	2	0	35.85	
	2.420	7	4	2	1	37.12	
١	2.413	9	3	0	3	37.24	
۱	2.357M	11	3	1	3	38.15	
۱	2.357M 2.305	6	4 3	1	2 2	38.15 39.04	
ļ	2.305 2.2145M	6 12	3	3	3	39.04 40.71	
1			_				
۱	2.2145M		4	2	2	40.71	
۱	2.1944	7	5	1	0	41.10	
۱	2.1787 2.1388	15 3	4 5	3 1	1 1	41.41 42.22	
۱	2.1388	1	4	0	3	43.15	
١		20	F	2	1		
١	2.0304 2.0011	29 3	5 3	2	1 4	44.59 45.28	
١	1.9779	2	4	4	0	45.84	
۱	1.9195	8	5	3	0	47.32	
۱	1.8835	1	3	2	4	48.28	
1	1 0010	2	F	2	1	/.9 2/	
١	1.8813 1.8654	2 8	5 6	3	1 0	48.34 48.78	
	1.8054 1.8264M	13	4	3	3	49.89	
	1.8264M		4	4	2	49.89	
١	1.8088	1	4	0	4	50.41	
1							
1							

Strontium Chromium Oxide, SrCr₂O₇ - (continued)

d(A)	I^{rel} $\sigma = \pm 2$]	hkl		2θ(°)	
1.8038 1.7795 1.7635 1.7367M 1.7367M	2 6 5 2	5 5 3 5 6	1 3 3 2 0	3 2 4 3 2	50.56 51.30 51.80 52.66 52.66	
1.7203 1.6909 1.6585 1.6432 1.6185	4 4 2 1 4	4 3 6 6 3	2 0 2 3 2	4 5 2 1 5	53.20 54.20 55.35 55.91 56.84	
1.5904 1.5829 1.5770 1.5547 1.5502	1 2 2 1 1L	6 7 7 4 1	1 1 0 1	3 0 1 5 6	57.94 58.24 58.48 59.40 59.59	
1.5316 1.5175 1.5150 1.5015 1.4699	1L 3 1L 1 2	6 7 7 7 7	4 2 0 1 3	1 1 2 2 0	60.39 61.01 61.12 61.73 63.21	
1.4524	6	7	3	1	64.06	

1. Strontium dichromate trihydrate

Sample

The sample was prepared by adding $SrCrO_4$ to a saturated solution of CrO_3 . Large red crystals formed slowly.

Color

Unground, deep reddish brown. Ground, deep orange.

Structure

Monoclinic, $P2_1/c$ (14), Z=4. The crystallographic information was obtained on a single crystal diffractometer by V. Himes. The cell parameters were confirmed by the Visser program [1969] and by axial ratios given by Groth [1908], assuming Z=4 and a density near 2.6.

Lattice constants of this sample

a = 8.3583(12) A b = 14.023(2) c = 7.574(2) β = 91.95(2)°

a/b = 0.5960

c/b = 0.5401

Volume 887.22 A³

Density

(calculated) 2.678 g/cm³

Figures of merit

 $F_{30} = 74.8 (0.010, 40)$

 $M_{20} = 38.4$

Reference intensity

 $I/I_{corundum} = 1.04(5)$

References

Groth, P. (1908). Chemische Krystallographie II (Wilhelm Engelmann, Leipzig, Germany) p. 593. Visser, J. W. (1969). J. Appl. Crystallogr. 2, 89.

		0				
CuK α_1	$\lambda = 1.540598$	Ä;	tem	p. 2	25±1 °C	
		Si,	a	= 5	.43088 Å	
d(A)	I ^{rel}		hk	l	2θ(°)	
	$\sigma = \pm 3$					
0.25	0.1				10 50	
7.18	9	1	1	0	12.31	
				0 1		
5.368	9	1	2	0	16.50	
5.286	25	-1	1	1	16.76	
	10	0	2 1	1 1		
4.425	21	-1	2	1	20.05	
4.178 4.079	23	1	3	0	21.25	
4.001			1 3	0	22.20	
3.784	45	0	0	2	23.49	
3.652	25	0	1	2	24.35	
3.614 3.589M	25 10	2	2	0	24.61	
3.589M 3.504	45	-2 0	1	1	24.79 25.40	
3.307	4	1	1	2	26.94	
3.282 3.230	3 17	-2 1	4	1 0	27.15 27.59	
3.208	35	2	2	1	27.79	
3.181	7	0	4	1	28.03	
3.061	3	1	2	2	29.15	
2.987 2.958	13 14	-1 1	4	1 1		
2.907	13	-2	3	1		
2.856M	15	2	3	1	31.29	
2.785	20	3	0	0	32.11	
2.752	7	1	3	2	32.51	
2.731	6 20	3	1	0	32.76 33.08	
2.686	9	2	4	0	33.33	
2.657	15	- 3	1	1	33.70 34.51	
2.567	13	2	2	2	34.92	
	9		1 5	1		
2.473M	7	-1	4	2	36.30	
2.4/311		-3	2	1	30.30	
	8.35 7.18 7.02 6.67 5.368 5.286 5.142M 5.142M 4.425 4.337 4.178 4.079 4.001 3.980 3.784 3.652 3.614 3.589M 3.589M 3.589M 3.589M 3.589M 3.589M 3.282 3.230 3.282 3.230 3.282 3.230 3.282 3.230 3.282 3.295 8.3061 2.987 2.958 2.907 2.856M 2.785 2.752 2.731 2.706 2.686 2.657 2.597 2.567 2.541 2.500	Internal standard d(A) I rel	Internal standard Si,	CuK α_1 λ = 1.540598 A; tem Internal standard Si, a $\frac{\circ}{\circ}$ A $\frac{\circ}{\circ}$ I rel hk σ = ±3	CuK α_1 λ = 1.540598 A; temp. 2 Internal standard Si, a = 5. d(A) I rel hkl	CuK α_1 λ = 1.540598 A; temp. 25±1 °C Internal standard Si, a = 5.43088 Å d(Å) I rel hk2 26(°)

Strontium Chromium Oxide Hydrate, $SrCr_2O_7 \cdot 3H_2O$ - (continued)

0	1					\neg
d(A)	I ^{rel}		hk	l	2θ(°)	
	$\sigma = \pm 3$					
2 (25	20			1	27.06	
2.425 2.393	30	3 3	2	1	37.04 37.56	
2.359	3	3 1	3 1	3	38.11	
2.339	3	0	6	0	38.48	
2.302M	9	-1	2	3	39.10	
2.30211	,	1	_	3	39.10	
2.302M		-3	3	1	39.10	
2.263M	1	1	2	3	39.80	
2.263M		3	3	1	39.80	
2.233	4	0	6	1	40.36	
2.212M	5	2	5	1	40.75	
2.212M		-2	4	2	40.75	
2.186	4	-1	5	2	41.26	
2.1662+	25	2	4	2	41.66	
2.1662+		-2	1	3	41.66	
2.1036M	16	3	2	2	42.96	
2.1036M		2	1	3	42.96	
2.0879	10	4	0	0	43.30	
2.0648	2	4	1	0	43.81	
2.0492M	13	-3	3	2	44.16	
2.0492M	13	0	4	3	44.16	
0.0100	10	,			15.06	
2.0103	12	-4	1	1	45.06	
2.0028M	21	-1	4	3 0	45.24 45.24	
2.0028M	22	4 1	4			
1.9767M	32	3	5	3	45.87 45.87	
1.9767M		3	3	U	43.8/	
1.9622	5	2	6	1	46.23	
1.9376M	24	0	7	1	46.85	
1.9376M		2	3	3	46.85	

1. Hydrazinecarbothioamide

CAS registry no.

79-19-6

Sample

The sample was obtained from J. T. Baker Co., Phillipsburg, NJ. It was recrystallized from ethanol.

Color

Colorless

Structure

Triclinic, $P\bar{1}$ (2), Z = 2. The structure was determined by Andreetti et al. [1970].

Lattice constants of this sample

a = 6.0266(12) Å

Ъ = 7.327(2)

c = 4.9353(15)

 $\alpha = 103.00(2)^{\circ}$

 $\beta = 96.33(2)$

y = 77.21(2)

a/b = 0.8225c/b = 0.6736

Volume

206.65 A³

Density

(calculated) 1.465 g/cm³

Figure of merit

 $F_{30} = 40.9(0.015,50)$

Reference intensity

 $I/I_{corundum} = 2.56(11)$

Additional pattern

1. PDF card 24-1952 [Institute of Physics,

University College, Cardiff, Wales]

Reference

Andreetti, G. D., Domiano, P., Gasparri, G. F., Nardelli, M., and Sgarabotto, P. (1970).

Acta Crystallogr. B26, 1005.

	CuK $lpha_1$	$\lambda = 1.540598$	Ă;	tem	p.	25±1 °C	
		rnal standard	W,	a =	3.	16524 A	
	d(Å)	I ^{rel}		hk	: L	2θ(°)	
		$\sigma = \pm 2$					
	5.86	5	1	0	0	15.11	
	5.021	18	1	1	0	17.65	
ļ	4.797	13	0	0	1	18.48	
	4.399 4.100	5 4	0	-1 1	1	20.17 21.66	
	4.100	7	1	1	Ü	21.00	
	3.619	36	0	1	1	24.58	
	3.497	11	0	2	0	25.45	
	3.309	1	1	2	0	26.92	
	3.245	11	1	-1	1	27.46	
	3.163	100	1	1	1	28.19	
	3.082	7	-1	-2	1	28.95	
	3.008	8	-1	1	1	29.68	
	2.931	6	2	0	0	30.47	
	2.767	1L	- 1		0	32.33	
	2.685	1	-2	-1	1	33.35	
	2.582	1	0	2	1	34.71	
	2.548	2	1	-2	1	35.19	
	2.527	4	-2		0	35.49	
	2.512	1	2	2	0	35.71	
	2.472	3	1	2	1	36.31	
	2.437M	2	-2	-2	1	36.86	
	2.437M		2	0	1	36.86	
	2.333	2	1	3	0	38.56	
	2.291	1L	0		1	39.29	
	2.271M	1L	-1	0	2	39.66	
	2.271M		-1	2	1	39.66	
	2.202M	2	0	-2	2	40.95	
	2.202M	•	-1		2	40.95	
	2.173	2	1	0	2	41.52	
	2.143	1	1	-1	2	42.13	
	2.138	1L	0	1	2	42.23	
	2.051	2	-2	2	0	44.13	
	2.037	1	2	3	0	44.44	
	2.008	2	-2	-1	2	45.11	
	1.990	1	3	1	0	45.54	
	1.985	2	1	-3	1	45.66	
	1.945M	1	1	-2	2	46.66	
	1.945M		0	3	1	46.66	
	1.929	1L	1	3	1	47.06	
	1.925	1L	- 3	-1	1	47.18	

Thiosemicarbazide, CH_5N_3S - (continued)

	d(A)	I ^{rel}	hkl	2θ(°)
		$\sigma = \pm 2$		
	1.877M	1L	0 -3 2	48.47
	1.877M		3 2 0	48.47
1	1.859	2	-3 -2 1	48.95
	1.836	1	-2 2 1	49.61
	1.811	1	0 2 2	50.35
	1.8025	1	2 0 2	50.60
	1.7906	1	-3 1 0	50.96
	1.7724M	2	3 0 1	51.52
	1.7724M		-1 3 1	51.52
	1.7594+	4	-2 -3 2	51.93
	1.7594+		1 2 2	51.93
1	1.7315	2	2 1 2	52.83
	1.7034	1L	-1 2 2	53.77
	1.6907M	1L	-2 -4 1	54.21
	1.6907M		-3 -3 1	54.21
	1.6741M	1	3 -1 1	54.79
	1.6741M		3 3 0	54.79
	1.6541	1L	3 2 1	55.51
	1.6219M	1	-1 -1 3	56.71
	1.6219M		2 -2 2	56.71

Synonym 1. Thiocarbamide CAS registry no. 62-56-6 Sample The sample was obtained from J. T. Baker Chemical Co., Phillipsburg, NJ. It was recrystallized from ethanol. Color Colorless Structure Orthorhombic, Pnma (62), Z = 4. The structure was first determined by Demeny and Nitta, [1928]. It was later refined by Truter [1957]. Lattice constants of this sample a = 7.6644(12) Åb = 8.5591(12)c = 5.4925(8)a/b = 0.8955c/b = 0.6417Volume 360.31 Å³ Density (calculated) 1.403 g/cm³ Figure of merit $F_{30} = 66.3(0.009,49)$

Reference intensity

 $I/I_{corundum} = 0.91(3)$

Additional pattern 1. PDF card 9-790 [Morse and Baun, Wright Patterson Air Force Base, Ohio]

References Demeny, L. and Nitta, I. (1928). Bull. Chem. Soc. Japan 3, 128. Truter, M. R. (1957). Acta Crystallogr. <u>10</u>, 786.

Cul	$\alpha_1 \lambda = 1.5$	40598 A	i; t	етр	. 25±1 °C	
	ternal stan		, a	= 3	. 16524 Å	
d(A)	I ^{rel}		hkl		2θ(°)	
	σ = ±	2				
4.624		0	1	1	19.18	
4.467		1	0	1	19.86	
3.834		0 2	2	0	20.74 23.18	
3.498		2	1	0	25.44	
3.142		2	0	1	28.38	
3.089		1	2	1	28.88	
2.951		2	1	1	30.26	
2.855		2	2	0	31.31	
2.747	7 8	0	0	2	32.57	
2.532	2M 28	2	2	1	35.43	
2.532		0	3	1	35.43	
2.475	31	1	1	2	36.26	
2.405	5 1	1	3	1	37.36	
2.317	7 9	3	0	1	38.83	
2.288	35 3	2	3	0	39.34	
2.159		2	1	2	41.79	
2.139		0	4	ō	42.21	
2.11		2	3	1	42.79	
2.036		3	2	1	44.44	
1.929	91 14	1	4	1	47.07	
1.916		4	0	0	47.40	
1.916	64M	1	3	2	47.40	
1.868	33 9	2	4	0	48.70	
1.827	71 8	3	1	2	49.87	
1.790	02 7	0	1	3	50.97	
1.769	95M 11	4	1	1	51.61	
1.769		2	4	1	51.61	
1.748	3	4	2	0	52.27	
1.713	35 1	3	2	2	53.43	
1.688	83 1	0	4	2	54.29	
1.666			2	1	55.06	
1.64		1	2	3	55.88	
1.63		0	5	1	56.23	
1.62	19 3	2	1	3	56.71	
1.57	16M 3	3	4	1	58.70	
1.57		4	0	2	58.70	
1.56		3	3	2	59.00	

Synonym 1. Stannous chloride dihydrate CAS registry no. 10025-69-1 Sample The sample was obtained from Fisher Scientific Co., Fair Lawn, NJ. Colorless Structure Monoclinic, $P2_1/c$ (14), Z = 4. The structure of SnCl₂·2H₂O was determined by Grdenic and Kamenar [1960]. Lattice constants of this sample a = 9.318(3) A 7.2571(14) b = c = 8.973(2) $\beta = 114.89(2)^{\circ}$ a/b = 1.2840c/b = 1.2365Volume o 550.4 Å³ Density (calculated) 2.723 g/cm³ Figure of merit $F_{30} = 49.4 (0.012,49)$ Reference intensity $I/I_{corundum} = 1.50(2)$ Additional pattern

Additional pattern
1. PDF card 20-1292 [University of Leeds,
Leeds, England]

Reference Grdenic, D. and Kamenar, B.(1960). Proc. Chem. Soc. <u>1960</u>, 312.

CuK	$\alpha_1 \lambda = 1.540$	598	о А;	temp	o. 25±1 °C
	ernal standa	rd S	i,	a =	5.43088 Å
d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 8$				
8.43	59	1	0	0	10.48
5.511	100	1	1	0	16.07
5.414 5.279	8 4	0 -1	1 1	1	16.36 16.78
4.483	1	-1	ō	2	19.79
/ 227	11	_	^	^	21 00
4.227 4.068M	11 19	2 1	0	0	21.00 21.83
4.068M		0	ō	2	21.83
3.902	4	-2	1	1	22.77
3.810	53	-1	1	2	23.33
3.655	81	2	1	0	24.33
3.628	13	0	2	0	24.52
3.551 3.402	12 43	0	1	2	25.06 26.17
3.402	43 8	-2 1	2	0	26.72
3.181	8 6	1 2	0	2	28.03 30.24
2.953 2.912	5	1	1	2	30.68
2.819M	28	-1	2	2	31.72
2.819M		3	0	0	31.72
2.754M	20	-3	1	2	32.49
2.754M		2	2	ō	32.49
2.709	60	0	2	2	33.04
2.642 2.627	34 22	-2 3	2	2	33.90 34.10
2.027	22	,	1	Ŭ	
2.541	6	0	1	3	35.29
2.461 2.420	14 4	2 -3	0	2	36.48 37.12
2.392	19	1	2	2	37.12
2.327	24	1	3	0	38.67
2.318M	25	0	3	1	38.82
2.318M	2.5	-4	0	2	38.82
2.303	25	-3	2	2	39.09
2.253 2.238	2 10	3 -2	1 0	1 4	39.99 40.26
2.236	10	-2	U	4	40.20
2.225	2 2	3	2	0	40.51
2.206M	2	-4	1	2	40.87 40.87
2.206M 2.171	3	1	1 3	1	41.57
2.138	7	-2	1	4	42.24
2 120M	20	-3	٥	4	42.41
2.130M 2.130M	20	-3 -1	0 3	2	42.41
2.113	4	4	0	0	42.75
2.100	25	2	3	0	43.04
2.079	4	0	3	2	43.50
2.048	12	-2	3	2	44.18
2.035M	3	2	2	2	44.49
2.035M 1.960	10	0	0 1	4	44.49 46.29
1.953M	12	-4	2	2	46.47

Tin Chloride Hydrate, $SnCl_2 \cdot 2H_20$ - (continued)

d(Å)	I ^{rel} σ = ±8		hkl	,	2θ(°)
1.953M		1	2	3	46.47
1.924M	4	-4	0	4	47.19
1.924M	·	1	3	2	47.19
1.905M	9	-3		1	47.71
1.905M	•	-2	2	4	47.71
1.894	10	3	1	2	47.99
1.8766M	4	-1	3	3	48.47
1.8766M		2	1	3	48.47
1.8618M	8	-4	1	4	48.88
1.8618M		-4	2	3	48.88
1.8357M	9	-3	2	4	49.62
1.8357M		3	3	0	49.62
1.8264	17	4	2	0	49.89
1.8142	17	0	4	0	50.25
1.8061M	14	0	3	3	50.49
1.8061M		- 5	1	2	50.49
1.7734	8	1	4	0	51.49
1.7610M	6	-3	3	3	51.88
1.7610M		- 5	1	1	51.88
1.7246	8	2	3	2	53.06

CAS registry no. 12039-90-6

Sample

The sample was prepared at NBS by R. F. Walker and S. Y. Holley. The sample had a small amount of ZrO2 and Si present.

Major impurities

>1% Hf; 0.1 to 1.0 % Al; 0.01 to 0.1% each Fe, Ni, and Ti; and 0.001 to 0.01% each Ca, Cr, and Mn.

Structure

Orthorhombic, Cmcm (63), Z = 4 [Seyfarth, 1928]. The structure was redetermined by Schachner et al. [1954] and by Vaughn and Bracuti [1958].

Lattice constants of this sample

a = 3.6958(3) Ab = 14.7514(9)

a/b = 0.2505

c = 3.6654(3)

c/b = 0.2485

Volume 199.83 A³

Density

(calculated) 4.899 g/cm³

Figure of merit

 $\mathbf{F_{30}} = 81.8(0.009,40)$

Additional pattern

1. PDF card 10-236 [Cotter et al., 1956].

References

Cotter, P. G., Kohn, J. A., and Potter, R. A.

(1956). J. Amer. Ceram. Soc. 39, 11. Schachner, H., Nowotny, H., and Kudielka, H. (1954). Monatsh. Chem. 85, 1140.

Seyfarth, H. (1928). Z. Kristallogr. Kristal-

lgeometrie Kristallphys. Kristallchem. 67,

Vaughn, P. A. and Bracuti, A. (1958). Diss. Abstr. B. 19, 1217.

CuK $lpha_1$	$\lambda = 1.540598$	Å; t	emp	. 2	5±1 °C	
Inter	nal standard	W, a	=	3.10	6524 Å	
d(Å)	I ^{rel}		hkl		2θ(°)	
	$\sigma = \pm 2$					
7.37	4	0	2	0	12.00	
3.685	9	0	4	0	24.13	
3.586	15	1	1	0	24.81	
3.283	32	0	2	1	27.14	
2.954	15	1	3	0	30.23	
2.601	1	0	4	1	34.46	
2.564	10	1	1	1	34.97	
2.458	15	ō	6	Ô	36.53	
2.300	100	1	3	1	39.14	
2.0417		0	6			
2.0417	14	U	В	1	44.33	
1.9518	1	1	5	1	46.49	
1.8480	11	2	0	0	49.27	
1.8434	7	0	8	0	49.40	
1.8330	14	0	0	2	49.70	
1.7782	1L	0	2	2	51.34	
1.6519	2	2	4	0	55.59	
1.6473	7	0	8	1	55.76	
1.6381	7	1	7	ī	56.10	
1.6322	6	i	í	2	56.32	
		2				
1.6102	7	2	2	1	57.16	
1.5576	4	1	3	.2	59.28	
1.4982	6	1	9	0	61.88	
1.4772	4	2	6	0	62.86	
1.4692	5	0	6	2	63.24	
1.4346	6	1	5	2	64.95	
1.3867	2	1	9	1	67.49	
1.3704	6	2	6	ī	68.40	
1.3050	1	2	8	0	72.35	
		2	0	2		
1.3016 1.2603	5 1		11	0	72.57 7 5.35	
1.2296M	3	2	8	1	77.58	
1.2296M			12	0	77.58	
1.2269	3	2	4	2	77.78	
1.2051	1	0	2	3	79.46	
1.1923	2	1	11	1	80.49	
1.1655	1	0	12	1	82.74	
1.1641	i	3	1	ì	82.86	
1.1602M	3	1	9	2	83.20	
	J	0	4	3	83.20	
1.1602M	•					
1.1502	2	2	6	2	84.09	
1.1361	6	3	3	1	85.38	
1.1291	4	1	3	3	86.04	
1.0998	1L	2	10	1	88.92	
1.0942	1L	0	6	3	89.50	
1.0849	1L	1	13	0	90.47	
1.0631	1	2	8	2	92.87	
1.0538	1		14	Õ	93.94	
1.0386	1		11	2	95.75	
1.0300						

INORGANIC NAMES

	Vol. or		Vo	ol. or	
	Sec.	Page		Sec.	Page
Aluminum, Al	1	11	Ammonium aluminum selenate hydrate,		Ū
Aluminum antimony, AlSb	4	72	$NH_4Al(SeO_4)_2 \cdot 12H_2O \dots$	9m	6
Aluminum bismuth oxide, Al ₄ Bi ₂ O ₉	11m	5	Ammonium aluminum sulfate,		
Aluminum borate, Al ₁₈ B ₄ 0 ₃₃	17m	5	$NH_4Al(SO_4)_2$	10m	5
Aluminum chloride, AlCl ₃	9m	61	Ammonium aluminum sulfate hydrate		
Aluminum chloride hydrate			(tschermigite), $NH_4A1(SO_4)_2 \cdot 12H_2O$	6	3
(chloraluminite), AlCl ₃ ·6H ₂ O	7	3	Ammonium azide, NH ₄ N ₃	9	4
Aluminum copper, Al ₄ Cu ₉	11m	79	Ammonium beryllium fluoride,		
Aluminum fluoride hydroxide silicate	,		$(NH_4)_2$ BeF ₄	3m	5
topaz, $Al_2(F,OH)_2SiO_4$	lm	4	Ammonium borate hydrate,		
Aluminum iron antimony oxide, bahian	ite,		$NH_4B_50_8 \cdot 4H_20 \dots$	17m	7
Al _{5.66} Fe _{0.09} Sb _{2.95} O ₁₆	16m	87	Ammonium boron fluoride, NH ₄ BF ₄	3m	6
Aluminum iron oxide, AlFeO ₃	15m	7	Ammonium bromide, NH ₄ Br	2	49
Aluminum lithium, Al ₄ Li ₉	10m	98	Ammonium cadmium bromide, (NH ₄) ₄ CdBr ₆	15m	9
Aluminum nickel, AlNi	6m	82	Ammonium cadmium chloride, NH ₄ CdCl ₃	5m	6
Aluminum nitride, AlN	12m	5	Ammonium cadmium sulfate,		_
Aluminum nitrate hydrate,			$(NH_4)_2Cd_2(SO_4)_3$	7m	5
$A1(NO_3)_3 \cdot 9H_2O$	11m	6	Ammonium cadmium sulfate hydrate,	•	_
Aluminum oxide (corundum), α -Al ₂ O ₃	9	3	$(NH_4)_2Cd(SO_4)_2 \cdot 6H_2O \dots$	8m	5
Aluminum oxide hydrate (boehmite),	_		Ammonium calcium sulfate,	0	_
α -Al ₂ O ₃ ·H ₂ O	3	38	$(NH_4)_2Ca_2(SO_4)_3$	8m	7
Aluminum oxide hydrate, diaspore,	•		Ammonium chlorate, NH ₄ ClO ₄	7	,
β-Al ₂ O ₃ ·H ₂ O	3	41	(orthorhombic)	7	6
Aluminum phosphate, Al(PO ₃) ₃	2m	3	Ammonium chloride (salammoniac),	1	F.0
Aluminum phosphate (berlinite),	10	•	NH ₄ Cl	1	59
AlPO ₄ (trigonal)	10	3	Ammonium chromium sulfate hydrate,	6	7
Aluminum phosphate, AlPO ₄	7.0	,	$NH_4Cr(SO_4)_2 \cdot 12H_2O \dots$	6	7
(orthorhombic)	10	4	Ammonium cobalt (II) chloride,	6	
Aluminum plutonium, Al ₃ Pu	15m	77	NH ₄ CoCl ₃	6m	5 9
Aluminum rhenium, AlRe	15m	79	Ammonium cobalt fluoride, NH ₄ CoF ₃	8m	9
Aluminum rhenium, Al ₁₂ Re	15m	80	Ammonium copper bromide hydrate,	10	,
Aluminum rhodium, AlRh	15m	82	(NH ₄) ₂ CuBr ₄ ·2H ₂ O	10m	6
Aluminum ruthenium, AlRu	15m	83	Ammonium copper chloride, NH ₄ CuCl ₃	7m	7
Aluminum ruthenium, Alam	15m	84	Ammonium copper chloride hydrate,	12m	6
Aluminum samarium, AlSm ₂	15m	86 88	(NH ₄) ₂ CuCl ₄ ·2H ₂ O	12m 11m	8
Aluminum samarium, AlSm ₃	15m	90	Ammonium copper fluoride, NH ₄ CuF ₃	11111	0
Aluminum samarium, Al ₂ Sm	15m 15m	91	Ammonium gallium sulfate hydrate,	6	9
Aluminum samarium, AlaSm	13111	71	$NH_4Ga(SO_4)_2 \cdot 12H_2O$	Ü	,
Aluminum silicate (mullite),	3m	3		6	8
$Al_6Si_2O_{13}$	15m	8	(NH ₄) ₂ GeF ₆ Ammonium hydrogen arsenate,	Ü	0
Aluminum technetium, Al ₆ Tc	15m	93	NH ₄ H ₂ AsO ₄	16m	9
Aluminum terbium, Al ₂ Tb	15m	95	Ammonium hydrogen carbonate	10111	
Aluminum terbium, Al ₂ Tb ₃	15m	96	(teschemacherite), (NH ₄)HCO ₃	9	5
Aluminum thorium uranium, Al ₆ ThU	15m	98	Ammonium hydrogen phosphate,		
Aluminum tungsten, Al ₅ W, δ -phase	15m	100	NH ₄ H ₂ PO ₄	4	64
Aluminum tungsten oxide, Al ₂ (WO ₄) ₃	11m	7	Ammonium iodate, NH ₄ IO ₃	10m	7
Aluminum vanadium, Al ₁₀ V		102	Ammonium iodide, NH ₄ I	4	56
Aluminum vanadium, Al _{10,25} V		104	Ammonium iridium chloride,		
Aluminum vanadium, Al ₂₃ V ₄		106	(NH ₄) ₂ IrCl ₆	8	6
Aluminum vanadium, Al ₄₅ V ₇ , α'-phase	15m	108	Ammonium iron chloride hydrate,		
Aluminum ytterbium, Al ₂ Yb		111	(NH ₄) ₂ FeCl ₅ ·H ₂ O	14m	7
Aluminum yttrium, Al ₃ Y		112	Ammonium iron fluoride, (NH ₄) ₃ FeF ₆	9m	9
Ammonium aluminum fluoride,			Ammonium iron sulfate, NH ₄ Fe(SO ₄) ₂	10m	8
(NH ₄) ₃ AlF ₆	9m	5	Ammonium iron sulfate hydrate,		
. 473			$NH_4Fe(SO_4)_2 \cdot 12H_2O \dots$	6	10
			Ammonium lead chloride, (NH ₄) ₂ PbCl ₆	11m	10
Further work on this program is	in progr	ess,	Ammonium magnesium aluminum fluoride,		
and it is anticipated that additi-			NH ₄ MgAlF ₆	10m	9
will be issued. Therefore, the cum			Ammonium magnesium chromium oxide		
here is not necessarily the con			hydrate, $(NH_4)_2Mg(CrO_4)_2 \cdot 6H_2O \dots$	8m	10
for the project.			Ammonium magnesium phosphate hydrate		
m - Monograph 25.			(struvite), NH ₄ MgPO ₄ ·6H ₂ O	3m	41
A mineral name in () indicates	a synthe	etic	Ammonium manganese chloride hydrate,		
sample.			$(NH_4)_2MnCl_4 \cdot 2H_2O \dots$	11m	11

	Vol. or Sec.	Page	Vo	ol. or Sec.	Dago
America access (II) Classific	DCC.	rage	Anti Cagh		Page
Ammonium manganese(II) fluoride, NH ₄ MnF ₃	5m	8	Antimony gadolinium, GdSb	4m 6	42 30
Ammonium manganese sulfate, (NH ₄) ₂ Mn ₂ (SO ₄) ₃	7m	8	Antimony gold (aurostibite), AuSb ₂	7 4	18 73
Ammonium manganese sulfate hydrate,	7m	0	Antimony indium, InSb	6	16
$(NH_4)_2Mn(SO_4)_2 \cdot 6H_2O \dots$	8m	12	Antimony iron titanium oxide	ŭ	10
Ammonium mercury chloride, NH4HgCl3	8m	14	hydroxide, derbylite,		
Ammonium molybdenum oxide phosphate	•		SbFe ₄ Ti ₃ O ₁₃ (OH)	16m	89
hydrate, $(NH_4)_3(MoO_3)_{12}PO_4 \cdot 4H_2O$	8	10	Antimony lanthanum, LaSb	4m	42
Ammonium nickel(II) chloride, NH ₄ NiCl ₃	6m	6	Antimony neodymium, NdSb Antimony(III) oxide (senarmontite),	4m	43
Ammonium nickel chromium oxide	Oili	U	Sb_2O_3 (cubic)	3	31
hydrate, (NH ₄) ₂ Ni(CrO ₄) ₂ ·6H ₂ O	8m	16	Antimony(III) oxide, valentinite,		
Ammonium nickel sulfate hydrate,			Sb ₂ 0 ₃ (orthorhombic)	10	6
$(NH_4)_2Ni(SO_4)_2 \cdot 6H_2O \dots$	17m	9	Antimony(IV) oxide (cervantite),	10	•
Ammonium nitrate (nitrammite), NH ₄ NO ₃	7	4	Sb_2O_4 Antimony(V) oxide, Sb_2O_5	10 10	8 10
Ammonium osmium bromide, (NH ₄) ₂ 0sBr ₆		71	Antimony oxide, Sb ₆ O ₁₃	16m	14
Ammonium osmium chloride,	· ·		Antimony praseodymium, PrSb	4m	43
$(NH_4)_2OsCl_6$	lm	6	Antimony scandium, SbSc	4m	44
Ammonium palladium chloride,			Antimony selenide, Sb ₂ Se ₃	3m	7
(NH ₄) ₂ PdCl ₄	6	6	Antimony silver sulfide, AgSbS ₂	-	10
Ammonium palladium chloride,	0	7	(cubic)	5m	48
(NH ₄) ₂ PdCl ₆	8	7	Antimony silver sulfide (miargyrite), AgSbS ₂ (monoclinic)	5m	49
(NH ₄) ₂ PtBr ₆	9	6	Antimony silver sulfide (pyrargyrite)		
Ammonium platinum chloride,		_	Ag ₃ SbS ₃ (trigonal)		51
(NH ₄) ₂ PtCl ₆	5	3	Antimony silver telluride, AgSbTe ₂ .	3m	47
Ammonium potassium iron chloride			Antimony(III) sulfide (stibnite),		
hydrate (kremersite),	7./	0	Sb ₂ S ₃	5	6
(NH ₄ ,K) ₂ FeCl ₅ ·H ₂ O	14m 9	8 7	Antimony terbium ShTh	3m 5m	8 61
Ammonium rhenium oxide, NH ₄ ReO ₄ Ammonium selenium bromide,	,	,	Antimony terbium, SbTb Antimony thorium, SbTh	4m	44
(NH ₄) ₂ SeBr ₆	8	4	Antimony thulium, SbTm	4m	45
Ammonium silicon fluoride			Antimony tin, SbSn	16m	15
(cryptohalite), (NH ₄) ₂ SiF ₆	5	5	Antimony ytterbium, SbYb	4m	45
Ammonium strontium chromium oxide,			Antimony yttrium, SbY	4m	46
(NH ₄) ₂ Sr(CrO ₄) ₂	14m	9	Arsenic, As	3	6 51
Ammonium strontium sulfate, $(NH_4)_2Sr(SO_4)_2$	15m	11	Arsenic cerium, AsCe	4m 13m	7
Ammonium sulfate (mascagnite),	13111		Arsenic oxide (arsenolite),	13	
(NH ₄) ₂ SO ₄	9	8	As ₂ 0 ₃ (cubic)	1	51
Ammonium sulfate, $(NH_4)_2S_2O_3$	17m	11	Arsenic oxide, claudetite, As ₂ 0 ₃		
Ammonium sulfate, $(NH_4)_2S_2O_8$	17m	13	(monoclinic)	3m	9
Ammonium tellurium bromide,	0	e	Barium, Ba	4	7 11
(NH ₄) ₂ TeBr ₆	8	5	Barium aluminum oxide, BaAl ₂ O ₄ Barium aluminum oxide, Ba ₃ Al ₂ O ₆	5m 12m	7
(NH ₄) ₂ TeCl ₆	8	8	Barium arsenate, $Ba_3(AsO_4)_2$	2m	6
Ammonium tin chloride, (NH ₄) ₂ SnCl ₆	5	4	Barium borate, BaB ₄ O ₇	4m	6
Ammonium titanium fluoride,			Barium borate, high form, BaB ₂ O ₄	4m	4
(NH ₄) ₂ TiF ₆	16m	10	Barium borate, BaB ₈ O ₁₃	7m	10
Ammonium vanadium oxide, NH ₄ VO ₃	8	9	Barium bromate hydrate,	0	10
Ammonium zinc chloride, (NH ₄) ₃ ZnCl ₅	15m 8m	12 18	Ba(Br0 ₃) ₂ ·H ₂ 0	8m 10m	19 63
Ammonium zinc fluoride, NH ₄ ZnF ₃ Ammonium zirconium fluoride,	Otti	10	Barium bromide, BaBr ₂ Barium bromide fluoride, BaBrF	10m	10
(NH ₄) ₃ ZrF ₇	6	14	Barium bromide hydrate, BaBr ₂ ·H ₂ O	3m	10
Antimonic acid, $H_{14}Sb_{14}O_{21}(OH)_{42}$	16m	13	Barium bromide hydrate, BaBr ₂ ·2H ₂ O	16m	16
Antimony, Sb	3	14	Barium cadmium chloride hydrate,		
Antimony bromide, α-SbBr ₃	15m	13	BaCdCl ₄ ·4H ₂ O	15m	14
Antimony cerium, CeSb	4m	40	Barium calcium nitrate,	1.2	20
Antimony cobalt CoSb	15m 15m	121 122	Ba _{.25} Ca _{.75} (NO ₃) ₂ Barium calcium nitrate,	12m	38
Antimony cobalt, CoSb ₂	15m	124	Ba _{.50} Ca _{.50} (NO ₃) ₂	12m	38
Antimony cobalt vanadium, CoSbV	15m	125	Barium calcium nitrate,	/	
Antimony dysprosium, DySb	4m	41	Ba _{.75} Ca _{.25} (NO ₃) ₂	12m	38
Antimony erbium, ErSb	4m	41	Barium calcium tungsten oxide,		
Antimony(III) fluoride, SbF ₃	2m	4	Ba ₂ CaWO ₆	9m	10

	Vol. or Sec.	Page	V	ol. or Sec.	Page
7 () 1 () 1 () 7 ()			D		
Barium carbonate (witherite), BaCO ₃ (orthorhombic)	2	54	Beryllium aluminum oxide (chrysoberyl), BeAl ₂ O ₄	9	10
Barium carbonate, BaCO ₃ (cubic)	~	34	Beryllium aluminum silicate, beryl,		
at 1075 °C	10	11	$Be_3Al_2(SiO_3)_6$	9	13
Barium chlorate, Ba(ClO ₃) ₂	16m	17	Beryllium calcium iron magnesium		
Barium chlorate hydrate,	2m	. 7	<pre>aluminum phosphate hydroxide hydrate, roscherite (monoclinic),</pre>		
Ba(ClO ₄) ₂ ·3H ₂ O Barium chlorate hydrate,	ZIII .	. ,	Be ₂ Ca(Fe _{.3} Mg _{.7}) ₂ Al _{.67} (PO ₄) ₃ (OH) ₃ ·2H ₂ O	0 16m	96
Ba(ClO ₃) ₂ ·H ₂ O	8m	21	Beryllium calcium manganese		
Barium chloride, BaCl ₂ , (cubic)	9m	13	aluminum iron phosphate hydroxide		
Barium chloride, BaCl ₂ ,	0	11	hydrate, roscherite (triclinic),		
(orthorhombic)	9m 10m	11 11	Be ₄ Ca ₂ (Mn _{3.91} Mg _{.04} Ca _{.05})(Al _{.13} Fe _{.42} Mn _{.12})(PO ₄) ₆ (OH) ₄ ·6H ₂ O	16m	100
Barium chloride hydrate, BaCl ₂ ·2H ₂ O	12m	9	Beryllium calcium oxide,	10111	100
Barium chromium oxide,			Be ₁₇ Ca ₁₂ O ₂₉	7m	89
Ba ₃ (CrO ₄) ₂	15m	16	Beryllium chromium oxide, BeCr ₂ O ₄	10	12
Barium fluoride, BaF ₂	1	70	Beryllium cobalt, BeCo	5m 10	62 13
Barium hydroxide phosphate, Ba ₅ (OH)(PO ₄) ₃	11m	12	Beryllium germanium oxide, Be ₂ GeO ₄ Beryllium lanthanum oxide, Be ₂ La ₂ O ₅	9m	65
Barium iodide, BaI ₂	10m	66	Beryllium niobium, Be ₂ Nb	7m	92
Barium iodide hydrate, BaI ₂ ·2H ₂ 0	16m	18	Beryllium oxide (bromellite), BeO	1	36
Barium lead chloride, BaPbCl ₄	11m	13	Beryllium palladium, BePd	5m	62
Barium lead nitrate, Ba _{.33} Pb _{.67} (NO ₃) ₂	12m	40	Beryllium silicate, phenakite, Be ₂ SiO ₄	8	11
Barium lead nitrate,	12111	40	Beryllium sulfate, BeSO ₄	15m	20
Ba _{.67} Pb _{.33} (NO ₃) ₂	12m	40	Bismuth, Bi	3	20
Barium manganese oxide,			Bismuth bromide oxide, BiOBr	, 8	14
Ba (MnO ₄) ₂	15m	17 7	Bismuth cerium, BiCe	4m	46
Barium molybdenum oxide, BaMoO ₄ Barium molybdenum oxide, Ba ₂ MoO ₅	7 12m	10	BioCl	4	54
Barium nitrate (nitrobarite),	12/4	10	Bismuth dysprosium, BiDy	4m	47
Ba(NO ₃) ₂	11m	14	Bismuth erbium, BiEr	4m	47
Barium nitrite hydrate,	15	10	Bismuth fluoride, BiF ₃	lm /	7
Ba(NO ₂) ₂ ·H ₂ O Barium oxide, BaO	15m 9m	18 63	Bismuth holmium, BiHo Bismuth(III) iodide, BiI ₃	4m 6	48 20
Barium oxide, BaO ₂	6	18	Bismuth iodide oxide, BiOI	9	16
Barium phosphate, Ba ₂ P ₂ O ₇ ,			Bismuth lanthanum, BiLa	4m	48
(high form)	16m	19	Bismuth neodymium, BiNd	4m	49
Barium phosphate, Ba ₃ (PO ₄) ₂	12m 5m	12 61	Bismuth oxide (bismite), α -Bi ₂ 0 ₃	3m	16
Barium selenide, BaSe Barium silicate, β-BaSiO ₃	13m	8	Bismuth phosphate, BiPO ₄ (monoclinic)	3m	11
Barium silicate (sanbornite),	20	J	Bismuth phosphate, BiPO ₄ (trigonal)	3m	13
β-BaSi ₂ 0 ₅	13m	10	Bismuth praseodymium, BiPr	4m	49
Barium silicate, Ba ₂ SiO ₄	13m	12	Bismuth sulfide (bismuthinite),	r	10
Barium silicate, Ba ₂ Si ₃ O ₈ Barium silicate, Ba ₃ SiO ₅	13m 13m	13 15	Bi ₂ S ₃ Bismuth telluride, BiTe	5m 4m	13 50
Barium silicate, Ba ₃ Si ₅ O ₁₃	13m	17	Bismuth telluride (tellurobis-	7111	30
Barium silicon fluoride, BaSiF ₆	4m	7	muthite), Bi ₂ Te ₃	3m	16
Barium strontium nitrate,	3.0	4.0	Bismuth vanadium oxide, low form,		
Ba. ₂₅ Sr. ₇₅ (NO ₃) ₂ Barium strontium nitrate,	12m	42	BiVO ₄ (tetragonal)	3m	14
Ba _{.50} Sr _{.50} (NO ₃) ₂	12m	42	Bismuth vanadium oxide, high form, BiVO ₄ (monoclinic)	3m	14
Barium strontium nitrate,			Boron oxide, B ₂ O ₃ , phase 1	10m	70
Ba.75Sr.25(NO ₃) ₂	12m	42	Cadmium, Cd	3	10
Barium sulfate (baryte), BaSO ₄	10m	12	Cadmium ammine chloride,	10	1/
Barium sulfide, BaS	7	8	$Cd(NH_3)_2Cl_2$	10m 16m	14 24
BaS ₂ O ₃ ·H ₂ O	16m	20	Cadmium bromate hydrate,	10111	2-7
Barium tin oxide, BaSnO ₃	3m	11	Cd(Br0 ₃)·2H ₂ 0	17m	14
Barium titanium oxide, BaTiO ₃	3	45	Cadmium bromide, CdBr ₂	9	17
Barium titanium silicate (fresnoite)	_	1.6	Cadmium carbonate (ctavite) CdCO	11m	15 11
Ba ₂ TiSi ₂ O ₈ Barium tungsten oxide, BaWO ₄	9m 7	14 9	Cadmium carbonate (otavite), CdCO ₃ Cadmium cerium, CdCe	7 5m	63
Barium tungsten oxide, Ba ₂ WO ₅	12m	14	Cadmium chlorate hydrate,	J	
Barium vanadium oxide, Ba3(VO4)2	14m	10	$Cd(ClO_4)_2 \cdot 6H_2O$	3m	19
Barium zirconium oxide, BaZrO ₃	5	8 64	Cadmium chloride, CdCl ₂	9	18
Beryllium, alpha, Be	9m	64	Cadmium chromium oxide, CdCr ₂ O ₄	5m	16

	Vol. or Sec.	Page		Vol. or Sec.	Daga
	Sec.	Page		sec.	Page
Cadmium copper, Cd ₈ Cu ₅	11m	81	Calcium chromium silicate		
Cadmium cyanide, Cd(CN) ₂	2m	8 15	(uvarovite), $Ca_3Cr_2(SiO_4)_3$	10	17 69
Cadmium fluoride, CdF ₂ Cadmium iron oxide, CdFe ₂ O ₄	10m 9m	16	Calcium fluoride (fluorite), CaF ₂ Calcium fluoride phosphate	1	09
Cadmium lanthanum, CdLa	5m	63	(fluorapatite), Ca ₅ F(PO ₄) ₃	3m	22
Cadmium manganese oxide, CdMn ₂ O ₄	10m	16	Calcium fluoride phosphate hydrate,		
Cadmium molybdenum oxide, $CdMoO_4$	6	21	CaFPO ₃ ·2H ₂ O	15m	24
Cadmium nitrate hydrate,	_	0.0	Calcium gallium germanium oxide,	7.0	10
$Cd(NO_3)_2 \cdot 4H_2O$	7m 2	93 27	Ca ₃ Ga ₂ (GeO ₄) ₃ Calcium hydrogen phosphate hydrate,	10	18
Cadmium oxide, CdO (ref. standard)	8m	2	$Ca_8H_2(PO_4)_6 \cdot 5H_2O \dots$	13m	21
Cadmium phosphate, Cd ₂ P ₂ O ₇	16m	26	Calcium hydrogen phosphate sulfate		
Cadmium phosphate, $Cd_3(PO_4)_2$	16m	27	hydrate, Ca ₂ HPO ₄ SO ₄ ·4H ₂ O	16m	109
Cadmium praseodymium, CdPr	5m	64	Calcium hydroxide (portlandite),	_	
Cadmium selenide (cadmoselite),	7	10	Calcium indata (lautamita)	1	58
CdSe (hexagonal) Cadmium silicate, Cd ₂ SiO ₄	7 13m	12 19	Calcium iodate (lautarite), Ca(IO ₃) ₂	14m	12
Cadmium silicate, Cd ₃ SiO ₅	13m	20	Calcium iodate hydrate,	1 7111	12
Cadmium sulfate, CdSO ₄	3m	20	Ca(IO ₃) ₂ ·6H ₂ O	14m	13
Cadmium sulfate hydrate,			Calcium iron germanium oxide,		
3CdSO ₄ ·8H ₂ O	6m	8	$Ca_3Fe_2(GeO_4)_3$	_ 10	19
Cadmium sulfate hydrate, CdSO ₄ ·H ₂ O	6m 4	10	Calcium iron silicate (andradite),	0	22
Cadmium sulfide (greenockite), CdS Cadmium telluride, CdTe	3m	15 21	Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22
Cadmium titanium oxide, CdTiO ₃	15m	21	hydroxide, julgoldite,	•	
Cadmium tungsten oxide, CdWO4	2m	8	$Ca_2Fe_3Si_3O_{10}(OH,O)_2(OH)_2$	10m	72
Calcium, Ca	9m	68	Calcium lead nitrate,		
Calcium aluminum germanium oxide,	2.0	3.5	Ca _{.33} Pb _{.67} (NO ₃) ₂	12m	44
$\operatorname{Ca}_3\operatorname{Al}_2(\operatorname{GeO}_4)_3$	10	15	Calcium lead nitrate,	12m	44
Calcium aluminum hydroxide, Ca ₃ Al ₂ (OH) ₁₂	11m	16	Ca _{.67} Pb _{.33} (NO ₃) ₂ Calcium magnesium silicate	12111	44
Calcium aluminum iron oxide	1111	10	(diopside), $CaMg(SiO_3)_2$	5m	17
(brownmillerite), Ca ₄ Al ₂ Fe ₂ O ₁₀	16m	28	Calcium molybdenum oxide		
Calcium aluminum oxide, Ca ₃ Al ₂ O ₆	5	10	(powellite), CaMoO ₄	6	22
Calcium aluminum oxide (mayenite),	0	20	Calcium nitrate, Ca(NO ₃) ₂	7	14
Ca ₁₂ Al ₁₄ O ₃₃ Calcium aluminum sulfate hydrate	9	20	Calcium oxide (lime), CaO Calcium oxide (lime), CaO	1	43
(ettringite), Ca ₆ Al ₂ S ₃ O ₁₈ ·3lH ₂ O	8	3	(calculated pattern)	14m	49
Calcium borate, CaB ₂ O ₄	15m	136	Calcium oxide phosphate, Ca40(PO4)2	12m	17
Calcium borate hydrate,			Calcium phosphate, β-Ca ₂ P ₂ O ₇	7m	95
hexahydroborite, Ca[B(OH) ₄] ₂ ·2H ₂ O	16m	104	Calcium platinum oxide, Ca ₄ PtO ₆	10m	18
Calcium boride, CaB ₆	16m	29 70	Calcium selenide, CaSe	5m	64
Calcium bromide, CaBr ₂ Calcium bromide hydrate, CaBr ₂ ·6H ₂ O	11m . 8	15	Calcium strontium nitrate, Ca _{.33} Sr _{.67} (NO ₃) ₂	12m	46
Calcium carbonate (aragonite),	. •	13	Calcium strontium nitrate,		, ,
CaCO ₃ (orthorhombic)	3	53	Ca _{.67} Sr _{.33} (NO ₃) ₂	12m	46
Calcium carbonate (aragonite),			Calcium sulfate (anhydrite), CaSO ₄	4	65
CaCO ₃ (orthorhombic, calculated	1/	,,	Calcium sulfate hydrate (gypsum),	17	16
pattern)	14m	44	CaSO ₄ ·2H ₂ O	17m 7	16 15
CaCO ₃ (hexagonal)	2	51	Calcium telluride, CaTe	4m	50
Calcium chloride (hydrophilite),	_	31	Calcium tin oxide, CaSnO ₃	17m	18
CaCl ₂	11m	18	Calcium titanium oxide		
Calcium chloride fluoride, CaClF	10m	17	(perovskite), CaTiO ₃	9m	17
Calcium chloride hydrate,	11	72	Calcium tungsten oxide, Ca ₃ WO ₆	9m	19
CaCl ₂ ·4H ₂ O Calcium chloride hydrate	11m	73	Calcium tungsten oxide, scheelite,	6	23
(antarcticite), CaCl ₂ ·6H ₂ O	12m	16	Carbon, diamond, C	2	5
Calcium chromium germanium oxide,			Cerium arsenate, CeAsO ₄	4m	8
$Ca_3Cr_2(GeO_4)_3$	10	16	Cerium(III) chloride, CeCl ₃	lm	8
Calcium chromium iron titanium			Cerium cobalt, CeCo ₂	13m	50
oxide, loveringite, Ca _{.72} RE _{.33} (Y,			Cerium cobalt, Ce ₂₄ Co ₁₁ Cerium copper, CeCu ₆	13m 7m	51 99
Th,U,Pb) _{.05} Ti _{12.48} Fe _{3.38} Cr _{2.24} Mg _{.92} Zr _{.58} Al _{.39} V _{.21} Mn _{.04} O ₃₈	16m	106	Cerium(III) fluoride, CeF ₃	8	17
Calcium chromium oxide (chromatite)			Cerium gallium, CeGa ₂	13m	54
CaCrO ₄	7	13	Cerium magnesium, CeMg	5m	65
Calcium chromium oxide, Ca ₃ (CrO ₄) ₂	15m	22	Cerium magnesium, CeMg ₃	13m	56

	Vol. or		V	ol. or	
	Sec.	Page		Sec.	Page
Cerium nickel, CeNi ₂ Cerium niobium titanium oxide	13m	58	Cesium magnesium chromium oxide hydrate, Cs ₂ Mg(CrO ₄) ₂ ·6H ₂ O	8m	29
(aeschynite), CeNbTiO ₆	3m	24	Cesium magnesium sulfate hydrate,	Om	2)
Cerium nitrate hydrate,	17m	20	Cs ₂ Mg(SO ₄) ₂ ·6H ₂ O Cesium manganese fluoride, CsMnF ₃	7m 10m	18 21
Ce(NO ₃) ₃ ·6H ₂ O Cerium nitride, CeN	4m	51	Cesium manganese sulfate hydrate,	TOIL	21
Cerium(IV) oxide (cerianite), CeO ₂	, 1	56	$Cs_2Mn(SO_4)_2 \cdot 6H_2O$	7m	20
Cerium phosphide, CeP	4m 13m	52 59	Cesium mercury chloride, CsHgCl ₃ Cesium nickel(II) chloride, CsNiCl ₃	7m 6m	22 12
Cerium thallium, CeTl ₃	13m	60	Cesium nickel sulfate hydrate,	0.2	
Cerium thallium, Ce ₃ Tl	13m	61	Cs ₂ Ni(SO ₄) ₂ ·6H ₂ O	7m	23 25
Cerium(III) vanadium oxide, CeVO ₄ Cerium zinc, CeZn	1m 5m	9 65	Cesium nitrate, CsNO ₃	9 2m	10
Cerium zinc, CeZn ₃	14m	50	Cesium osmium chloride, Cs ₂ OsCl ₆	2m	11
Cerium zinc, CeZn ₅ Cerium zinc, Ce ₂ Zn ₁₇	14m 14m	53 55	Cesium platinum bromide, Cs ₂ PtBr ₆ . Cesium platinum chloride, Cs ₂ PtCl ₆	8 5	19 14
Cesium aluminum sulfate hydrate,	1 -4	33	Cesium platinum fluoride, Cs ₂ PtF ₆ .	6	27
CsAl(SO ₄) ₂ ·12H ₂ O	6	25	Cesium selenium bromide, Cs ₂ SeBr ₆ .	8	20
Cesium antimony fluoride, CsSbF ₆ Cesium beryllium fluoride, CsBeF ₃	4m 9m	9 69	Cesium silicon fluoride, Cs ₂ SiF ₆ Cesium strontium chloride, CsSrCl ₃	5 6m	19 13
Cesium boron fluoride, CsBF ₄	8	22	Cesium sulfate, Cs ₂ SO ₄	7	17
Cesium bromate, CsBrO ₃	8 3	18 49	Cesium tellurium bromide, Cs ₂ TeBr ₆ Cesium tin chloride, Cs ₂ SnCl ₆	9 5	24 16
Cesium cadmium bromide, CsCdBr ₃	3	73	Cesium vanadium sulfate hydrate,	3	10
(hexagonal)	10m	20	$CsV(SO_4)_2 \cdot 12H_2O$	lm	11
Cesium cadmium chloride, CsCdCl ₃ (hexagonal)	5m	19	Cesium zinc sulfate hydrate, Cs ₂ Zn(SO ₄) ₂ ·6H ₂ O	7 m	25
Cesium calcium chloride, CsCaCl ₃	5m	21	Chromium, Cr	5	20
Cesium calcium fluoride, CsCaF ₃	8m	25	Chromium boride, &-CrB	17m	22 77
Cesium calcium sulfate, $Cs_2Ca_2(SO_4)_3$	7 m	12	Chromium chloride, CrCl ₂ Chromium chloride, CrCl ₃	11m 17m	23
Cesium cerium chloride, Cs ₂ CeCl ₆	14m	58	Chromium chloride hydrate, CrCl ₃ ·6H ₂ O		31
Cesium chlorate, CsClO ₃ Cesium chlorate, CsClO ₄ ,	8	20	Chromium cobalt niobium, CoCrNb Chromium cobalt silicide,	15m	140
(orthorhombic)	1m	10	Co ₉ Cr ₁₅ Si ₆	14m	62
Cesium chloride, CsCl	2	44	Chromium cobalt tantalum, CoCrTa	15m	142
Cesium chromium oxide, Cs ₂ CrO ₄ Cesium chromium sulfate hydrate,	3m	25	Chromium fluoride, CrF ₂ Chromium fluoride, Cr ₂ F ₅	10m 7m	81 108
CsCr(SO ₄) ₂ ·12H ₂ O	8	21	Chromium(III) fluoride hydrate,		
Cesium cobalt(II) chloride, CsCoCl ₃ Cesium cobalt chloride, Cs ₂ CoCl ₄	6m 11m	11 19	CrF ₃ ·3H ₂ O Chromium iridium, Cr ₃ Ir	5m 6m	25 14
Cesium copper(II) chloride, CsCuCl ₃	5m	22	Chromium iron oxide,	Olli	14
Cesium copper chloride, Cs ₂ CuCl ₄	11m	20	Cr _{1.3} Fe _{0.7} 0 ₃	17m	24
Cesium copper sulfate hydrate, Cs ₂ Cu(SO ₄) ₂ ·6H ₂ O	7 m	14	Chromium oxide, CrO ₃	17m 5	25 22
Cesium fluoride, CsF	3m	26	Chromium phosphate, α-CrPO ₄	2m	12
Cesium gallium sulfate hydrate,	8	23	Chromium phosphate, β-CrPO ₄ Chromium phosphate hydrate,	9	26
CsGa(SO ₄) ₂ ·12H ₂ O Cesium germanium fluoride, Cs ₂ GeF ₆	5	17	CrPO ₄ ·6H ₂ O	15m	27
Cesium iodate, CsIO ₃	15m	26	Chromium rhodium, Cr ₃ Rh	6m	15
Cesium iodide, CsI	4 7m	47 103	Chromium silicide, Cr_3Si Chromium sulfate, $Cr_2(SO_4)_3$	6 16m	29 33
Cesium iodine chloride, CsICl ₂	3	50	Cobalt, Co (cubic)	4m	10
Cesium iron chloride hydrate,	1/	1/	Cobalt aluminum oxide, CoAl ₂ O ₄	9	27
Cs ₂ FeCl ₅ ·H ₂ O	14m	14	Cobalt ammine iodide, Co(NH ₃) ₆ I ₃ Cobalt antimony oxide, CoSb ₂ O ₆	10m 5m	83 26
$Cs_2Fe(SO_4)_2 \cdot 6H_2O \dots$	7m	16	Cobalt arsenide, CoAs ₂	4m	10
Cesium iron sulfate hydrate, CsFe(SO ₄) ₂ ·12H ₂ O	6	28	Cobalt arsenide (skutterudite), CoAs ₃	10	21
Cesium lead(II) chloride, CsPbCl ₃	ŭ	20	Cobalt borate, Co ₃ (BO ₃) ₂	12m	20
(tetragonal)	5m	24	Cobalt bromide hydrate, CoBr ₂ ·6H ₂ O	12m	21
Cesium lead fluoride, CsPbF ₃ Cesium lithium cobalt cyanide,	8m	26	Cobalt(II) carbonate (sphaero- cobaltite), CoCO ₃	10	24
CsLiCo(CN) ₆	10m	79	Cobalt chlorate hydrate,	_0	
Cesium lithium fluoride, CsLiF ₂	7m	105	$Co(C1O_4)_2 \cdot 6H_2O$	3m	28
Cesium magnesium chromium oxide, Cs ₂ Mg ₂ (CrO ₄) ₃	8m	27	Cobalt chloride hydrate, CoCl ₂ ·2H ₂ O Cobalt chloride hydrate, CoCl ₂ ·6H ₂ O	llm llm	22 23

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Cobalt chromium oxide CoCraO.	9m	21	Cobalt(II) oxide, CoO	9	28
Cobalt chromium oxide, CoCr ₂ O ₄ Cobalt copper tin, CoCu ₂ Sn	14m	64	Cobalt(II, III) oxide, Co ₃ O ₄	9	29
Cobalt dysprosium, Co ₂ Dy	13m	63	Cobalt phosphate, $Co(PO_3)_2$	13m	23
Cobalt erbium, Co ₂ Er	13m	64	Cobalt phosphide, CoP	14m	83
Cobalt erbium, Co ₇ Er ₂	13m	65	Cobalt phosphide, CoP3	14m	85
Cobalt fluoride, CoF ₂	10m	85	Cobalt platinum, CoPt (disordered)	15m	167
Cobalt fluoride hydrate, CoF ₂ ·4H ₂ O	11m	24	Cobalt platinum, CoPt (ordered)	15m	168
Cobalt gadolinium, CoGd ₃	13m	68	Cobalt platinum, CoPt ₃		
Cobalt gadolinium, Co ₂ Gd	13m	71	(disordered)	15m	169
Cobalt gadolinium, Co7Gd2	13m	72	Cobalt platinum, CoPt ₃ (ordered)	15m	170
Cobalt gallium hafnium, Co ₂ GaHf	14m	65	Cobalt plutonium, CoPu ₂	14m	87
Cobalt gallium manganese, Co ₂ GaMn	13m	75	Cobalt plutonium, CoPu ₃	15m	171
Cobalt gallium niobium,	15-	1//	Cobalt plutonium, CoPu ₆	14m	89
Co _{1.5} Ga _{0.5} Nb	15m	144 66	Cobalt plutonium, Co ₂ Pu	14m	91
Cobalt gallium niobium, Co ₂ GaNb	14m 10	27	Cobalt plutonium, Co ₃ Pu	14m 14m	92 94
Cobalt gallium oxide, CoGa ₂ O ₄ Cobalt gallium tantalum,	10	21	Cobalt presendamium CoaPr	14m	97
Co _{1.5} Ga _{0.5} Ta	15m	146	Cobalt praseodymium, Co ₂ Pr Cobalt rhodium sulfide, Co ₈ RhS ₈	14m	98
Cobalt gallium tantalum, Co ₂ GaTa	13m	76	Cobalt ruthenium sulfide, CogRuSg	14m	100
Cobalt gallium titanium, Co ₂ GaTi	13m	77	Cobalt samarium, Co ₂ Sm	15m	173
Cobalt gallium vanadium, Co ₂ GaV	13m	78	Cobalt samarium, Co ₅ Sm	13m	90
Cobalt germanium, Co ₃ Ge ₂	14m	67	Cobalt silicate, Co ₂ SiO ₄		-
Cobalt germanium, Co ₅ Ge ₇	15m	148	(orthorhombic)	4m	11
Cobalt germanium hafnium,			Cobalt silicon fluoride hydrate,		
Co ₁₆ Ge ₇ Hf ₆	14m	69	CoSiF ₆ ·6H ₂ O	3m	27
Cobalt germanium manganese,			Cobalt sulfate, β-CoSO ₄	2m	14
Co ₂ GeMn	13m	79	Cobalt tantalum silicide,		
Cobalt germanium niobium,			Co ₁₆ Ta ₆ Si ₇	14m	102
Co _{1.5} Ge _{0.5} Nb	15m	150	Cobalt thorium, Co ₁₇ Th ₂	12m	64
Cobalt germanium niobium,			Cobalt tin, Co ₃ Sn ₂	13m	92
Co ₁₆ Ge ₇ Nb ₆	14m	71	Cobalt tin oxide, Co ₂ SnO ₄	15m	30
Cobalt germanium oxide, Co ₂ GeO ₄	10	27	Cobalt tin vanadium, Co ₂ SnV	15m	174
Cobalt germanium tantalum,	15	150	Cobalt tin zirconium, Co ₂ SnZr	15m	175
Col. 5Ge _{0.5} Ta	15m	152	Cobalt titanium oxide, CoTiO ₃	4m	13
Cobalt germanium tantalum,	1./m	73	Cobalt titanium silicide,	1/m	104
Coholt cormanium titanium Co-CeTi	14m 13m	73 80	Cohelt typester oxide CoMO	14m 4m	104 13
Cobalt germanium titanium, Co ₂ GeTi Cobalt hafnium tin, Co ₂ HfSn	14m	75	Cobalt tungsten oxide, CoWO ₄ Cobalt vanadium silicide, Co ₂ VSi	15m	176
Cobalt holmium, Co ₂ Ho	14m	76	Copper, Cu	1	15
Cobalt holmium, Co _{9.2} Ho ₁₂	15m	154	Copper ammine selenate,	•	
Cobalt hydroxide, β-Co(OH) ₂	15m	29	Cu(NH ₃) ₄ SeO ₄	10m	87
Cobalt indium, CoIn3	13m	81	Copper ammine sulfate hydrate,		
Cobalt iodide, CoI ₂	4m	52	$Cu(NH_3)_4SO_4 \cdot H_2O \cdot \dots \cdot \dots$	10m	90
Cobalt iron arsenide			Copper antimony oxide, CuSb ₂ O ₆	5m	27
(safflorite), CoFeAs ₄	10	28	Copper arsenate (trippkeite),		
Cobalt iron oxide, CoFe ₂ O ₄	9m	22	CuAs 204	16m	120
Cobalt iron sulfide, Co ₈ FeS ₈	14m	77	Copper(I) bromide, CuBr	4	36
Cobalt iron vanadium,			Copper(I) chloride (nantokite),	,	0.5
Co _{4.35} Fe _{13.47} V _{12.18}	14m	79	CuCl	4	35
Cobalt lanthanum, CoLa ₃	13m	83	Copper fluoride hydrate, CuF2.2H20	11m	25
Cobalt lutetium, Co ₂ Lu	13m	86	Copper hydrogen phosphite hydrate,	11	0.2
Cobalt magnesium, Co ₂ Mg	15m	156	CuHPO ₃ ·2H ₂ O	11m	83
Cobalt manganese silicide, Co ₂ MnSi	14m	81	Copper hydroxide carbonate,	10	30
Cobalt mercury thiocyanate,	2m	13	azurite, Cu ₃ (OH) ₂ (CO ₃) ₂	10	30
Co[Hg(CNS)4]	14m	82	Copper hydroxide carbonate (malachite), Cu ₂ (OH) ₂ CO ₃	10	31
Cobalt molybdenum, Co ₂ Mo ₃	15m	158	Copper hydroxide phosphate	10	31
Cobalt molybdenum, Co ₇ Mo ₆	15m	160	(libethenite), Cu ₂ (OH)PO ₄	17m	30
Cobalt molybdenum silicide,			Copper(I) iodide (marshite), CuI	4	38
Co ₃ Mo ₂ Si	15m	162	Copper lead hydroxide sulfate,		
Cobalt neodymium, Co ₂ Nd	13m	87	linarite, CuPb(OH) ₂ (SO ₄)	16m	34
Cobalt nickel tin,			Copper(I) oxide (cuprite), Cu ₂ 0	2	23
Co.75Ni.75Sn.75	13m	88	Copper(II) oxide (tenorite), CuO	1	49
Cobalt niobium silicide, Co ₃ Nb ₄ Si ₇	15m	164	Copper phosphate, Cu(PO ₃) ₂		15
Cobalt niobium tin, Co2NbSn	15m	166	Copper phosphate, a-Cu ₂ P ₂ O ₇		113
Cobalt nitrate hydrate,			Copper sulfate (chalcocyanite),		
α -Co(NO ₃) ₂ ·6H ₂ O	12m	22	CuSO ₄	3m	29

	Vol. or		Ve	ol. or	
	Sec.	Page		Sec.	Page
Copper(II) sulfide (covellite), CuS	4	13	Germanium oxide, GeO ₂		
Copper uranium oxide, CuUO ₄	10m	93	(tetragonal) (high form)	8	28
Dichlorotetraaquochromium (III)		, ,	Gold, Au	ì	33
chloride dihydrate, [Cr(H20)4Cl2]			Gold chloride, AuCl	16m	37
Cl·2H ₂ O	16m	31	Gold(I) cyanide, AuCN	10	33
Dysprosium arsenate, DyAsO ₄	3m	30	Gold holmium, AuHo	5m	68
Dysprosium arsenide, DyAs	4m	53	Gold magnesium, AuMg	6m	83
Dysprosium gallium oxide,	2	15	Gold notossium ovenide Auk(CN)	6m	16 36
Dy ₃ Ga ₅ O ₁₂ Dysprosium gold, DyAu	2m 5m	15 66	Gold potassium cyanide, AuK(CN) ₂ Gold tin, AuSn	8m 7	19
Dysprosium nitride, DyN	4m	53	Gold titanium, AuTi ₃	6m	17
Dysprosium oxide, Dy ₂ O ₃	9	30	Gold vanadium, AuV ₃	6m	18
Dysprosium silver, DyAg	5m	66	Hafnium, Hf	3	18
Dysprosium telluride, DyTe	4m	54	Holmium arsenate, HoAsO ₄	3m	34
Dysprosium vanadium oxide, DyVO ₄	4m	15	Holmium fluoride, HoF ₃	10m	23
Erbium arsenate, ErAsO ₄	3m	31	Holmium nitride, HoN	4m	58
Erbium arsenide, ErAs	4m	54	Holmium oxide, Ho ₂ O ₃	, 9	32
Erbium gallium oxide, Er ₃ Ga ₅ O ₁₂	1m 2m	12 16	Holmium selenide, HoSe	4m 5m	59 68
Erbium manganese oxide, ErMnO ₃ Erbium nitride, ErN	4m	55	Holmium silver, HoAg Holmium vanadium oxide, HoVO ₄	4m	18
Erbium oxide, Er ₂ O ₃	8	25	Hydrazinium sulfate, (NH ₃) ₂ SO ₄	17m	38
Erbium phosphate, ErPO ₄	9	31	Hydrogen amidosulfate, H ₂ NSO ₃ H	7	54
Erbium silver, ErAg	5m	67	Hydrogen arsenate, H ₅ As ₃ O ₁₀	7m	84
Erbium telluride, ErTe	4m	55	Hydrogen borate, β -HBO ₂ (monoclinic)	9m	71
Erbium vanadium oxide, ErVO ₄	5m	29	Hydrogen borate (metaborite),		
Europium arsenate, EuAsO4	3m	32	HBO ₂ (cubic)	4m	27
Europium (III) chloride, EuCl ₃	lm	13 13	Hydrogen iodate, HIO ₃	S	28 104
Europium chloride oxide, EuClO Europium gallium oxide,	1m	13	Hydrogen iodate, HI ₃ O ₈	8m	104
Eu ₃ Ga ₅ O ₁₂	2m	17	H ₃ PO ₄ • 0.5H ₂ O	12m	56
Europium nitride, EuN	4m	56	Hydrogen tellurate, H ₆ TeO ₆	12m	34
Europium oxide, EuO	4m	56	Indium, In	3	12
Europium phosphate, EuPO ₄	11m	26	Indium arsenide, InAs	3m	35
Europium(III) vanadium oxide, EuVO ₄	4m	16	Indium oxide, In ₂ O ₃	5	26
Gadolinium arsenate, GdAsO ₄	4m	17	Indium phosphate, InPO ₄	8	29
Gadolinium arsenide, GdAs Gadolinium chloride hydrate,	4m	57	Indium sulfide, In ₂ S ₃ Iodine, I ₂	11m 3	30 16
GdCl ₃ ·6H ₂ O	7m	118	Iridium, Ir	4	9
Gadolinium chloride oxide, GdClO	1m	17	Iridium niobium, IrNb3	6m	19
Gadolinium fluoride, GdF ₃	lm	14	Iridium oxide, ÍrO ₂	4m	19
Gadolinium gallium oxide,			Iridium titanium, ĪrTi ₃	6m	20
Gd ₃ Ga ₅ O ₁₂	2m	18	Iridium vanadium, IrV ₃	6m	21
Gadolinium indium, GdIn	5m	67	Iron, α-Fe	4	3
Gadolinium nitride, GdN	4m	57	Iron arsenide, FeAs	lm	19
Gadolinium oxide, Gd ₂ O ₃ Gadolinium silver, GdAg	lm 6m	16	Iron arsenide (loellingite), FeAs ₂	10 4m	34 59
Gadolinium titanium oxide, Gd ₂ TiO ₅	6m 8m	87 32	Iron bromide, FeBr ₂	15m	32
Gadolinium vanadium oxide, GdVO ₄	5m	30	Iron chloride hydrate, FeCl ₂ ·2H ₂ O	11m	32
Gallium, Ga	2	9	Iron chloride hydrate (hydromolysite),		
Gallium arsenide, GaAs	3m	33	FeCl ₃ ·6H ₂ 0	17m	40
Gallium lutetium oxide, Ga ₅ Lu ₃ O ₁₂	2m	22	Iron fluoride hydrate, FeF ₂ ·4H ₂ O	11m	90
Gallium magnesium, Ga ₂ Mg	12m	48	Iron fluoride hydrate, β-FeF ₃ ·3H ₂ 0.	17m	41
Gallium magnesium, Ga ₅ Mg ₂	12m	51	Iron hydroxide sulfate hydrate,	10.	0.5
Gallium neodymium oxide, Ga ₅ Nd ₃ O ₁₂	lm /	34	butlerite, Fe(OH)SO ₄ ·2H ₂ O	10m	95 60
Gallium oxide, α -Ga ₂ O ₃	4	25	<pre>Iron iodide, FeI₂</pre>	4m	80
GaPO ₄	8	27	Fe ₃ O ₄	5m	31
Gallium phosphate hydrate,			Iron phosphate, FePO ₄	15m	33
GaPO ₄ ·2H ₂ O	8m	34	Iron phosphate hydrate (vivianite),		
Gallium samarium oxide, Ga ₅ Sm ₃ O ₁₂	1m	42	$Fe_3(PO_4)_2 \cdot 8H_2O \dots$	16m	38
Gallium ytterbium oxide, Ga5Yb3O12	lm .	49	Iron sulfate, $Fe_2(SO_4)_3$	16m	39
Gallium yttrium oxide, Ga ₅ Y ₃ O ₁₂	lm	50	Iron sulfate hydrate (melanterite),		0.0
Germanium, Ge	1 /m	18	FeSO ₄ • 7H ₂ O	8m	38
Germanium iodide, GeI ₂ Germanium(IV) iodide, GeI ₄	4m 5	58 25	Iron sulfide (pyrite), FeS_2 Iron thorium, $Fe_{17}Th_2$	5 12m	29 67
Germanium oxide, GeO ₂ (hexagonal)	J	2.3	Iron titanium oxide (ilmenite),	1411	0,
(low form)	1	51	FeTiO ₃	15m	34
			Lanthanum arsenate, LaAsO ₄	3m	36

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Inthonym organido InAc	4m	60	Lithium hamium fluorida LiDaF	r	25
Lanthanum arsenide, LaAs Lanthanum borate, LaBO ₃	1m	20	Lithium barium fluoride, LiBaF ₃ Lithium beryllium fluoride, Li ₂ BeF ₄	5m 7m	35 126
Lanthanum chloride, LaCl ₃	1m	20	Lithium borate, $\text{Li}_2\text{B}_4\text{O}_7$	8m	114
Lanthanum chloride oxide, LaClO	7	22	Lithium bromide, LiBr	4	30
Lanthanum fluoride, LaF ₃	7	21	Lithium calcium aluminum boron		
Lanthanum magnesium, LaMg	5m	69	hydroxy silicate, liddicoatite,	- (
Lanthanum nickel platinum,	1.7~	42	Ca(Li,A1) ₃ A1 ₆ B ₃ Si ₆ O ₂₇ (0,OH) ₃ (OH,F)	16m	42
LaNi _{0.25} Pt _{4.75} Lanthanum niobium titanium oxíde,	17m	42	Lithium carbonate, Li ₂ CO ₃ Lithium chlorate hydrate,	8m	42
LaNbTiO ₆	3m	37	LiClO ₄ ·3H ₂ O	8	34
Lanthanum nitrate hydrate,	· · ·		Lithium chloride, LiCl	1	62
La(NO ₃) ₃ ·6H ₂ O	8m	40	Lithium chromium oxide hydrate,		
Lanthanum nitride, LaN	4m	61	Li ₂ CrO ₄ ·2H ₂ O	16m	44
Lanthanum oxide, La ₂ O ₃	3	33	Lithium fluoride, LiF	1	61
Lanthanum phosphide, LaP Lanthanum selenide, LaSe	5m 4m	69 61	Lithium gallium oxide, LiGaO ₂	10m	31 46
Lanthanum títanium oxide, La ₂ Ti ₂ O ₇	15m	35	Lithium hydroxide, LiOH	17m 11m	92
Lanthanum zinc, LaZn	5m	70	Lithium hydroxide hydrate, LiOH·H ₂ O Lithium iodate, LiIO ₃ (hexagonal)	7	26
Lead, Pb	1	34	Lithium iodate, LiIO ₃ (tetragonal)	10m	33
Lead borate, PbB ₄ O ₇	4m	19	Lithium molybdenum oxide, Li ₂ MoO ₄		
Lead bromide, PbBr ₂	17m	43	(trigonal)	lm	23
Lead bromide chloride, PbBrCl	11m	33	Lithium niobium oxide, LiNbO ₃	6m	22
Lead bromide fluoride, PbBrF	10m	25	Lithium nitrate, LiNO ₃	7	27
Lead bromide hydroxide, PbBr(OH) Lead bromide oxide, Pb ₃ O ₂ Br ₂	16m 5m	40 32	Lithium oxide, Li ₂ 0	1m	25
Lead carbonate (cerussite), PbCO ₃	2	56	Lithium phosphate hydrate, Li ₃ P ₃ O ₉ ·3H ₂ O	2m	20
Lead chloride (cotunnite), PbCl ₂	12m	23	Lithium phosphate, low form	2111	20
Lead chloride fluoride (matlockite),			(lithiophosphate), Li ₃ PO ₄	4m	21
PbC1F	13m	25	Lithium phosphate, high form,		
Lead chromium oxide, Pb ₂ CrO ₅	14m	16	Li ₃ PO ₄	3m	39
Lead fluoride, α-PbF ₂	_	0.7	Lithium potassium sulfate, KLiSO ₄	3m	43
(orthorhombic)	5	31	Lithium rubidium fluoride, LiRbF ₂	7m	128
Lead fluoride, β-PbF ₂ (cubic)	5 10m	33 26	Lithium selenide, Li ₂ Se Lithium silicate, Li ₂ SiO ₃	10m 14m	100 19
Lead fluoride iodide, PbFI Lead hydrogen arsenate (schultenite)		20	Lithium silver bromide,	17111	19
PbHAsO ₄	, 14m	18	Li.2Ag.8Br	12m	55
Lead hydrogen phosphate, PbHPO4	15m	37	Lithium silver bromide,		
Lead hydroxide phosphate,			Li.4Ag.6Br	12m	55
Pb ₅ OH(PO ₄) ₃	8	33	Lithium silver bromide,		
Lead iodate, $Pb(IO_3)_2$	17m	45	Li.6Ag.4Br	12m	55
Lead(II) iodide, PbI ₂	5	34	Lithium silver bromide,	12m	55
Lead molybdenum oxide (wulfenite), PbMoO ₄	7	23	Li _{.8} Ag _{.2} Br Lithium sodium aluminum fluoride,	1211	33
Lead nitrate, Pb(NO ₃) ₂	5	36	cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂	9 m	23
Lead oxide (litharge), PbO (red,		0 -	Lithium sodium sulfate, LiNaSO ₄	6m	24
tetragonal)	2	30	Lithium sulfate, Li ₂ SO ₄	6m	26
Lead oxide (massicot), PbO (yellow,			Lithium sulfate hydrate,		
orthorhombic)	2	32	Li ₂ SO ₄ ·H ₂ O	4m	22
Lead(II,III) oxide (minium), Pb ₃ O ₄	8 10m	32 27	Lithium sulfide, Li ₂ S	10m 14m	101 20
Lead oxide sulfate, Pb ₅ O ₅ SO ₄ Lead selenide (clausthalite), PbSe	10m 5	38	Lithium tantalum oxide, LiTaO ₃ Lithium telluride, Li ₂ Te		102
Lead strontium nitrate,	3	50	Lithium tin oxide, Li ₂ SnO ₃		45
Pb _{.33} Sr _{.67} (NO ₃) ₂	12m	53	Lithium tungsten oxide, Li ₂ WO ₄		
Lead strontium nitrate,			(trigonal)	1m	25
Pb _{.67} Sr _{.33} (NO ₃) ₂	12m	53	Lithium tungsten oxide hydrate,		
Lead sulfate (anglesite), PbSO ₄	3	67	Li ₂ WO ₄ ·0.5H ₂ O		20
Lead sulfide (galena), PbS	2	18	Lithium uranium fluoride, LiUF ₅		131 36
Lead tin oxide, Pb ₂ SnO ₄ Lead titanium oxide (macedonite),	10m	29	Lutetium arsenate, LuAsO ₄ Lutetium manganese oxide, LuMnO ₃	5 m 2 m	23
PbTiO ₃	5	39	Lutetium nitride, LuN	4m	62
Lead tungsten oxide (stolzite),			Lutetium oxide, Lu ₂ O ₃	_	27
PbWO ₄ (tetragonal)	5m	34	Lutetium vanadium oxide, LuVO ₄		37
Lead uranium oxide, Pb ₃ UO ₆	8m	109	Magnesium, Mg		10
Lithium aluminum fluoride,			Magnesium aluminum oxide (spinel),		
α-Li ₃ AlF ₆	8m	111	MgAl ₂ O ₄	9m	25
Lithium arsenate, Li ₃ AsO ₄	2m 8m	19 113	Magnesium aluminum silicate (low		
Lithium azide, LiN ₃	OIII	113	cordierite), Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)	1m	28
			(OT OHOTHOMOTO)		

	Vol. or		Vo	ol. or	
	Sec.	Page		Sec.	Page
Magnesium aluminum silicate			Magnesium sulfate hydrate	7	30
(indialite) Mg ₂ Al ₄ Si ₅ O ₁₈ (hexagonal)	1m	29	(epsomite), MgSO ₄ ·7H ₂ O Magnesium sulfide, MgS	7	31
Magnesium aluminum silicate (pyrope), Mg3Al ₂ (SiO ₄) ₂	4m	24	Magnesium sulfite hydrate, MgSO ₃ ·6H ₂ O	9m	26
Magnesium borate, MgB ₄ 0 ₇	17m	47	Magnesium tin, Mg ₂ Sn	5	41
Magnesium borate, Mg ₂ B ₂ O ₅ (triclinic)	4m	25	Magnesium tin oxide, Mg ₂ SnO ₄ Magnesium titanium oxide	10m	37
Magnesium bromide, MgBr ₂	4m	62	(geikielite), MgTiO ₃	5 12m	43 25
Magnesium bromide hydrate, MgBr ₂ ·6H ₂ O	11m	35	Magnesium titanium oxide, Mg_2TiO_4 Magnesium tungsten oxide, $MgWO_4$	12m 13m	27
Magnesium carbonate (magnesite), MgCO ₃	7	28	Manganese, α-Mn (calculated pattern) Manganese, α-Mn	7m 17m	142 50
Magnesium cerium nitrate hydrate,			Manganese aluminum oxide (galaxite),		
Mg ₃ Ce ₂ (NO ₃) ₁₂ ·24H ₂ O Magnesium chlorate hydrate,	10	20	MnAl ₂ O ₄ Manganese bromide, MnBr ₂	9 4m	35 63
$Mg(C10_4)_2 \cdot 6H_2O \dots$	7m	30	Manganese(II) carbonate		00
Magnesium chloride (chloro- magnesite), MgCl ₂	11m	94	<pre>(rhodochrosite), MnCO₃ Manganese chloride (scacchite),</pre>	7	32
Magnesium chloride hydrate,	7m	135	MnCl ₂ Manganese chloride hydrate,	8m	43
MgCl ₂ ·12H ₂ O Magnesium chloride hydrate	7m	133	MnCl ₂ *2H ₂ O	11m	38
(bischofite), MgCl ₂ ·6H ₂ O Magnesium chromium oxide	11m	37	Manganese chloride hydrate, MnCl ₂ ·4H ₂ O	9m	28
(magnesiochromite), MgCr ₂ O ₄	9	34	Manganese cobalt oxide, MnCo ₂ O ₄	9m	30
Magnesium chromium oxide hydrate, MgCrO ₄ · 5H ₂ O	15m	39	Manganese fluoride, MnF ₂	10m 4m	105 63
Magnesium fluoride (sellaite), MgF ₂	4	33	Manganese iron oxide (jacobsite),		
Magnesium fluoride silicate (humite), Mg ₇ F ₂ Si ₃ O ₁₂	lm	30	MnFe ₂ O ₄ Manganese(II) oxide (manganosite),	9	36
Magnesium fluoride silicate (norbergite), Mg ₃ F ₂ SiO ₄	10	39	MnO Manganese oxide (pyrolusite), β-MnO ₂	5 10m	45 39
Magnesium gallium oxide, MgGa ₂ O ₄	10	36	Manganese oxide (bixbyite), α -Mn ₂ O ₃	11m	95
Magnesium germanium oxide, Mg ₂ GeO ₄ (cubic)	10	37	Manganese oxide (hausmannite), Mn ₃ O ₄	10m	38
Magnesium germanium oxide,	10	20	Manganese oxide hydroxide, groutite,	11-	0.7
Mg ₂ GeO ₄ (orthorhombic)	10	38	α-Mn00H Manganese phosphate, Mn(PO ₃) ₂	11m 14m	97 21
hydrate, newberyite, MgHPO ₄ ·3H ₂ O Magnesium hydroxide (brucite),	7m	139	Manganese phosphate, $Mn_2P_2O_7$ Manganese phosphate, $Mn_3(PO_4)_2$	15m 16m	41 47
Mg(OH) ₂	6	30	Manganese selenide, MnSe	10	41
Magnesium iodate hydrate, Mg(IO ₃) ₂ ·4H ₂ O	17m	48	Manganese sulfate hydrate (szmikite), MnSO ₄ ·H ₂ O	16m	49
Magnesium iron hydroxide carbonate			Manganese sulfide (alabandite),	4	11
hydrate, pyroaurite, Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O (rhomb.)	10m	104	α-MnS Manganese titanium oxide	4	11
Magnesium iron hydroxide carbonate hydrate, sjögrenite,			(pyrophanite), MnTiO ₃ Manganese(II) tungsten oxide	15m	42
$Mg_6Fe_2(OH)_{16}CO_3 \cdot 4H_2O$, (hexag.)	10m	103	(huebnerite), $MnWO_4$	2m	24
Magnesium lanthanum nitrate hydrate, Mg ₃ La ₂ (NO ₃) ₁₂ ·24H ₂ O	1m	22	Manganese vanadium oxide, Mn ₂ V ₂ O ₇ Mercury amide chloride, HgNH ₂ Cl	9m 10m	75 40
Magnesium manganese oxide, MgMn ₂ O ₄	10m	35	Mercury ammine chloride,	11	20
Magnesium mercury, MgHg Magnesium molybdenum oxide, MgMoO ₄	6m 7m	84 28	Hg(NH ₃) ₂ Cl ₂ Mercury bromate, Hg(BrO ₃) ₂	11m 10m	39 107
Magnesium nickel oxide, MgNiO ₂ Magnesium oxide (periclase), MgO	10m 1	36 37	Mercury bromide, HgBr ₂ Mercury bromide, Hg ₂ Br ₂	10m 7	110 33
Magnesium phosphate, $Mg(P0_3)_2$	13m	26	Mercury chloride, HgCl ₂	13m	29
Magnesium phosphate, α -Mg ₂ P ₂ O ₇ Magnesium selenide, MgSe	9m 5m	73 70	Mercury chloride (calomel), Hg ₂ Cl ₂	13m	30
Magnesium selenite hydrate,			Mercury chloride sulfide,		
MgSeO ₃ ·6H ₂ O	8m	116	α -Hg ₃ Cl ₂ S ₂ Mercury(II) cyanide, Hg(CN) ₂	8m 6	118 35
MgSiO ₃	6	32	Mercury(II) fluoride, HgF ₂ Mercury hydroxide nitrate,	2m	25
Mg ₂ SiO ₄	1	83	Hg(0H)NO ₃	17m	52
Magnesium sulfate hydrate (kieserite), MgSO ₄ ·H ₂ O	16m	46	Mercury(I) iodide, HgI Mercury(II) iodide, HgI ₂ (tetragonal)	4) 7m	49 32
7, 10- 4 12			, (,,,,		

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Mercury(ll) oxide (montroydite),			Osmium titanium, OsTi	6m	85
<pre>HgO Mercury(I1) selenide (tiemannite),</pre>	9	39	Palladium, Pd	1	21
HgSe	7	35	Palladium hydride, PdH _{0.706} Palladium oxide, PdO	5m 4	72 27
Mercury sulfate, HgSO ₄	16m	50	Palladium selenium (palladseite),		
Mercury sulfate, Hg ₂ SO ₄	16m	52	Pd ₁₇ Se ₁₅	16m	139
Mercury(II) sulfide (cinnabar), HgS (hexagonal)	4	17	Palladium vanadium, PdV ₃ Phosphorus bromide, PBr ₇	6m 7m	32 150
Mercury(II) sulfide (metacinnabar),	7	1,	Phosphorus oxide (stable form 1),	, m	130
HgS (cubic)	4	21	P ₂ O ₅ (orthorhombic)	9m	86
Molybdenum, Mo	1	20	Phosphorus oxide (stable form 11),	0	0.0
Molybdenum arsenide, Mo ₂ As ₃ Molybdenum osmium, Mo ₃ Os	10m 6m	115 28	P_2O_5 (orthorhombic)	9m	88
Molybdenum oxide (molybdite), MoO ₃	3	30	P_4O_{10} (rhombohedral)	9m	91
Molybdenum sulfide (molybdenite),			Platinum, Pt	1	31
MoS ₂	5	47	Platinum titanium, PtTi ₃	6m	33
Neodymium arsenate, NdAsO ₄ Neodymium arsenide, NdAs	4m 4m	28 64	Platinum vanadium, PtV ₃	6m 4m	34 65
Neodymium borate, NdBO ₃	1m	32	Plutonium arsenide, PuAs Plutonium phosphide, PuP	4m	65
Neodymium chloride, NdCl ₃	1m	33	Plutonium telluride, PuTe	4m	66
Neodymium chloride oxide, NdOCl	8	37	Potassium aluminum sulfate,		
Neodymium fluoride, NdF ₃	8	36	KA1(SO ₄) ₂	9m	31
Neodymium oxide, Nd ₂ O ₃ Neodymium phosphate, NdPO ₄	4 11m	26 40	Potassium aluminum sulfate hydrate (potash alum), KA1(SO ₄) ₂ ·12H ₂ O	6	36
Neodymium selenide, NdSe	5 m	71	Potassium arsenic fluoride,	O	30
Neodymium silver, NdAg	5m	71	KAsF ₆	17m	57
Neodymium vanadium oxide, NdVO ₄	4m	30	Potassium barium chromium oxide,	2.4	
Neptunium nitride, NpN Nickel, Ni	4m 1	64 13	K ₂ Ba(CrO ₄) ₂	14m	23
Nickel aluminum oxide, NiAl ₂ O ₄	9	42	Potassium barium iron titanium oxide, K _{1.16} Ba _{0.72} Fe _{0.36} Ti _{5.58} O ₁₃	16m	147
Nickel arsenide (rammelsbergite),		_	Potassium barium molybdenum oxide,		
NiAs ₂	10	42	$K_2Ba(MoO_4)_2$	14m	24
Nickel arsenic sulfide	l m	35	Potassium barium nickel nitrite,	Q _m	32
(gersdorffite), NiAsS Nickel bromide, NiBr ₂	1m 10m	119	K_2 BaNi (NO ₂) ₆ Potassium borate hydroxide hydrate,	9m	32
Nickel(II) carbonate, NiCO ₃	10	117	K ₂ B ₄ O ₅ (OH) ₄ ·2H ₂ O	15m	46
(trigonal)	1m	36	Potassium boron hydride, KBH4	9	44
Nickel chloride, NiCl ₂	9m	81	Potassium bromate, KBrO ₃	7	38
Nickel chloride hydrate, NiCl ₂ ·6H ₂ O	11m	42	Potassium bromide, KBr Potassium bromide chloride,	1	66
Nickel fluoride, NiF ₂	10m	121	KBr _{0.5} Cl _{0.5}	8m	46
Nickel fluoride hydrate, NiF ₂ ·4H ₂ O	11m	43	Potassium bromide iodide,		
Nickel gallium oxide, NiGa ₂ O ₄	10	45	KBr .331 .67	11m	44
Nickel germanium oxide, Ni ₂ GeO ₄ Nickel iron oxide (trevorite),	9	43	Potassium bromide iodide,	11m	45
NiFe ₂ O ₄	10	44	$KBr_{.67}I_{.33}$ Potassium cadmium fluoride, $KCdF_3$	8m	47
Nickel nitrate hydrate,			Potassium cadmium sulfate,		
$Ni(NO_3)_2 \cdot 6H_2O \dots$	12m	26	$K_2Cd_2(SO_4)_3$	7m	34
Nickel(11) oxide (bunsenite), NiO	1	47	Potassium calcium carbonate	0	/. 0
Nickel phosphate, Ni(PO ₃) ₂ Nickel phosphide, Ni ₁₂ P ₅	14m 9m	22 83	(fairchildite), K ₂ Ca(CO ₃) ₂ Potassium calcium chloride, KCaCl ₃	8m 7m	48 36
Nickel silicon fluoride hydrate,	7111	03	Potassium calcium fluoride, KCaF ₃	8m	49
NiSiF ₆ ·6H ₂ O	8	38	Potassium calcium magnesium sulfate	,	
Nickel sulfate, NiSO ₄	2m	26	$K_2CaMg(SO_4)_3$	7m	37
Nickel sulfate hydrate (retgersite), NiSO ₄ ·6H ₂ O	7	36	Potassium calcium nickel nitrite, K ₂ CaNi(NO ₂) ₆	9m	33
Nickel sulfide, millerite, NiS	lm	37	Potassium calcium sulfate,	7111	33
Nickel tungsten oxide, NiWO4	2m	27	$K_2Ca_2(SO_4)_3$	7m	39
Nickel yttrium, Ni ₃ Y	10m	123	Potassium calcium sulfate hydrate	2./	0.5
Niobium boride, ζ-NbB	17m	54 148	(syngenite), $K_2Ca(SO_4)_2 \cdot H_2O$	14m 12m	25 59
Niobium chloride oxide, NbCl ₃ O Niobium osmium, Nb ₃ Os	7m 6m	148 30	Potassium cerium fluoride, β-KCeF ₄ Potassium chlorate, KClO ₃	1 2 m	42
Niobium platinum, Nb ₃ Pt	6m	31	Potassium chlorate, KClO ₄	6	43
Niobium silicide, NbSi ₂	8	39	Potassium chloride (sylvite), KCl	1	65
Niobium silicide, α-Nb ₅ Si ₃	15m	43	Potassium chromium oxide, K ₃ CrO ₈	3m	44
Niobium silicide, β-Nb ₅ Si ₃ Osmium, Os	15m 4	44 8	Potassium chromium oxide (lopezite) $K_2Cr_2O_7$, 15m	47
	_		-2-2-1		•

	Vol. or Sec.	Page		Vol. or Sec.	Page
Determine abuning suids sulfate			Potografum monogogogo ovido VMnO	7	42
Potassium chromium oxide sulfate, $K_2(CrO_4)_{.33}(SO_4)_{.67}$	12m	28	Potassium manganese oxide, KMnO ₄ Potassium manganese(II) sulfate	,	42
Potassium chromium oxide sulfate,			(manganolangbeinite), K ₂ Mn ₂ (SO ₄) ₃	6m	43
$K_2(CrO_4)_{.67}(SO_4)_{.33}$	12m	27	Potassium molybdenum oxide, K ₂ MoO ₄	15m	53
Potassium chromium sulfate,	16-	E 0	Potassium molybdenum oxide phos-	8	4.2
$KCr(SO_4)_2$ Potassium chromium sulfate hydrate,	16m	58	phate hydrate, K ₃ (MoO ₃) ₁₂ PO ₄ ·4H ₂ O Potassium nickel fluoride, KNiF ₃	7 m	43 42
KCr(SO ₄) ₂ ·12H ₂ O	6	39	Potassium nickel fluoride, K ₂ NiF ₄	10m	45
Potassium cobalt(II) fluoride,			Potassium nickel(II) sulfate,		
KCoF ₃	6m	1 37	$K_2Ni_2(SO_4)_3$	6m	46
Potassium cobalt fluoride, K ₂ CoF ₄	11m	46	Potassium niobium fluoride, K ₂ NbF ₇	8m	120 62
Potassium cobalt nitrite, K ₃ Co(NO ₂) ₆	9	45	Potassium niobium oxide, $KNb0_3$ Potassium nitrate (niter), KNO_3	17m 3	58
Potassium cobalt(II) sulfate,		.5	Potassium nitrite, KNO ₂	9m	38
$K_2Co_2(SO_4)_3$	6m	35	Potassium nitrosyl ruthenium		
Potassium copper chloride, KCuCl ₃	7m	41	chloride, K ₂ NORuCl ₅	16m	61
Potassium copper chloride hydrate	0	26	Potassium oxide, K ₂ 0	10m	125
(mitscherlichite), K ₂ CuCl ₄ ·2H ₂ O Potassium copper(II) fluoride,	9m	34	Potassium platinum bromide, K_2 PtBr ₆ Potassium platinum chloride,	8	40
KCuF ₃	6m	38	K ₂ PtCl ₆	13m	34
Potassium cyanate, KCNO	7	39	Potassium platinum fluoride,		
Potassium cyanide, KCN	1	77	K ₂ PtF ₆	6	42
Potassium fluoride, KF	1	64	Potassium rhenium chloride, K ₂ ReCl ₆	2m	28
Potassium germanium fluoride,	6	41	Potassium rhenium oxide, KReO ₄	8	41
K ₂ GeF ₆ Potassium hydrogen arsenate,	O	41	Potassium rubidium chloride, K _{0.5} Rb _{0.5} Cl	8m	76
KH ₂ AsO ₄	lm	38	Potassium rubidium chromium oxide,	O.I.I	, 0
Potassium hydrogen iodate,			KRbCrO ₄	12m	29
KH(IO ₃) ₂	17m	58	Potassium ruthenium chloride,		
Potassium hydrogen phosphate,	^	(0	K ₂ RuCl ₆	10	46
KH ₂ PO ₄ Potassium hydroxida KOH at 300 °C	3 4m	69 66	Potassium ruthenium oxide chloride	10	47
Potassium hydroxide, KOH at 300 °C Potassium iodate, KIO ₃	15m	48	hydrate, $K_4Ru_2OCl_{10} \cdot H_2O$ Potassium selenate, K_2SeO_4	9m	41
Potassium iodate, KIO ₄	7	41	Potassium selenide, K ₂ Se	10m	126
Potassium iodide, KI	1	68	Potassium selenium bromide, K ₂ SeBr ₆	8	41
Potassium iron chloride hydrate			Potassium silicon fluoride		
(erythrosiderite), K ₂ FeCl ₅ ·H ₂ O	14m	27	(hieratite), K ₂ SiF ₆	5	50
Potassium iron cyanide, K ₃ Fe(CN) ₆ Potassium iron(II) fluoride, KFeF ₃	9m 6m	35 39	Potassium silver cyanide, KAg(CN) ₂ Potassium sodium aluminum fluoride	8m	78
Potassium iron fluoride, K ₃ FeF ₆	9m	37	(elpasolite), K ₂ NaAlF ₆	9m	43
Potassium iron sulfate (yavapaiite),			Potassium sodium bromide,		
KFe(SO ₄) ₂	16m	59	K _{.2} Na _{.8} Br	12m	62
Potassium lead chloride, KPb ₂ Cl ₅	13m	33	Potassium sodium bromide,	10	60
Potassium lead chromium oxide, K ₂ Pb(CrO ₄) ₂	14m	28	K _{.4} Na _{.6} Br Potassium sodium bromide,	12m	62
Potassium lead molybdenum oxide,	14111	20	K _{.6} Na _{.4} Br	12m	62
$K_2Pb(MoO_4)_2$	14m	29	Potassium sodium bromide,		
Potassium lead phosphate,			K _{.8} Na _{.2} Br	12m	62
$K_2Pb(PO_3)_4$	15m	50	Potassium sodium chloride,	1.0	()
Potassium lead selenate, K ₂ Pb(SeO ₄) ₂	15m	52	K. ₂ Na _{.8} Cl Potassium sodium chloride,	12m	63
Potassium lead sulfate (palmierite),		32	K ₄ Na ₆ Cl	12m	63
$K_2Pb(SO_4)_2$	14m	30	Potassium sodium chloride,		
Potassium magnesium chloride			K _{.6} Na _{.4} Cl	12m	63
hydrate (carnallite), KMgCl ₃ ·6H ₂ O	8m	50	Potassium sodium chloride,		
Potassium magnesium chromium oxide,	0	5 2	K ₈ Na ₂ C1	12m	63
K ₂ Mg ₂ (CrO ₄) ₃ Potassium magnesium fluoride, KMgF ₃	8m 6m	52 42	Potassium sodium sulfate, K _{.67} Na _{1.33} SO ₄	6m	48
Potassium magnesium fluoride,	O.I.I	72	Potassium sodium sulfate, KNaSO ₄	6m	50
K_2MgF_4	10m	42	Potassium sodium sulfate		
Potassium magnesium selenate			(aphthitalite), $K_3Na(SO_4)_2$	6m	52
hydrate, K ₂ Mg(SeO ₄) ₂ ·6H ₂ O	10m	43	Potassium strontium chromium oxide,	15	57
Potassium magnesium sulfate (langbeinite), K ₂ Mg ₂ (SO ₄) ₃	6m	40	K ₂ Sr(CrO ₄) ₂ Potassium strontium selenate,	15m	57
Potassium magnesium sulfate hydrate	Jili	40	$K_2Sr(SeO_4)_2$	15m	58
(picromerite), $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54	Potassium strontium sulfate		
Potassium manganese(II) fluoride,		. =	(kalistrontite), $K_2Sr(SO_4)_2$	14m	31
KMnF ₃	6m	45			

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Potassium sulfate, K ₂ S ₂ O ₇	9m	99	Rubidium copper sulfate hydrate,		
Potassium sulfate, K ₂ S ₂ O ₈	17m	64	$Rb_2Cu(SO_4)_2 \cdot 6H_2O \cdot \dots $	8m	61
Potassium sulfate (arcanite), K ₂ SO ₄	3	62	Rubidium fluoride, RbF	8m	63
Potassium sulfide, K ₂ S	10m	127	Rubidium iodate, RbIO ₃	15m	62
Potassium telluride, K ₂ Te	10m	128	Rubidium iodate, RbIO ₄	2m	31
Potassium thiocyanate, KCNS	8	44	Rubidium iodide, RbI	4	43
Potassium tin chloride, K ₂ SnCl ₆	6	38	Rubidium iron chloride hydrate,		
Potassium titanium fluoride, K ₂ TiF ₆	7	40	Rb ₂ FeCl ₅ ·H ₂ O	14m	33
Potassium tungsten oxide, K ₂ WO ₄	llm	47	Rubidium iron sulfate hydrate,		
Potassium vanadium oxide, KV_3O_8	8m	56	$Rb_2Fe(SO_4)_2 \cdot 6H_2O \dots$	8m	64
Potassium zinc bromide hydrate,			Rubidium lead chromium oxide,		
KZnBr ₃ ·2H ₂ O	11m	104	Rb ₂ Pb(CrO ₄) ₂	14m	34
Potassium zinc fluoride, KZnF ₃	5	51	Rubidium lead molybdenum oxide,	3.5	(0
Potassium zinc fluoride, K ₂ ZnF ₄	10m	46	$Rb_2Pb(MoO_4)_2$	15m	63
Potassium zinc iodide hydrate,	11	107	Rubidium magnesium chromium oxide,	0	66
KZnI ₃ ·2H ₂ O	llm 6m	107 54	Rb ₂ Mg ₂ (CrO ₄) ₃	8m	66
Potassium zinc sulfate, K ₂ Zn ₂ (SO ₄) ₃ Potassium zinc sulfate hydrate,	6m	54	Rubidium magnesium chromium oxide	0 m	68
$K_2 Zn(SO_4)_2 \cdot 6H_2O \cdot \dots $	7m	43	hydrate, Rb ₂ Mg(CrO ₄) ₂ ·6H ₂ O Rubidium magnesium sulfate,	8 m	00
Potassium zinc vanadium oxide	1 111	43	and the second s	7 m	50
hydrate, $K_2Zn_2V_{10}O_{28}\cdot 16H_2O$	3m	45	Rb ₂ Mg ₂ (SO ₄) ₃ Rubidium magnesium sulfate	7 m	30
Potassium zirconium fluoride,	2111	43	hydrate, Rb ₂ Mg(SO ₄) ₂ ·6H ₂ O	8m	70
K ₃ ZrF ₇	9	46	Rubidium manganese(II) fluoride,	Oili	70
Praseodymium arsenate, PrAsO ₄	4m	32	RbMnF ₃	5m	44
Praseodymium arsenide, PrAs	4m	67	Rubidium manganese sulfate,	Jiii	77
Praseodymium chloride, PrCl ₃	1m	39	$Rb_2Mn_2(SO_4)_3$	7 m	52
Praseodymium chloride oxide, ProCl	9	47	Rubidium nickel(II) chloride,	7	J .
Praseodymium fluoride, PrF ₃	5	52	RbNiCl ₃	6m	58
Praseodymium sulfide, PrS	4m	67	Rubidium nickel sulfate,		
Praseodymium vanadium oxide, PrVO ₄	5m	40	$Rb_2Ni_2(SO_4)_3$	8m	72
Praseodymium zinc, PrZn	5m	72	Rubidium nickel sulfate hydrate,		
Rhenium, Re	2	13	$Rb_2Ni(SO_4)_2 \cdot 6H_2O \dots$	8m	74
Rhodium, Rh	3	9	Rubidium nitrate, RbNO ₃ (trigonal)	5m	45
Rhodium vanadium, RhV ₃	6m	56	Rubidium platinum chloride,		
Rubidium aluminum sulfate			Rb ₂ PtCl ₆	5	53
hydrate, $RbAl(SO_4)_2 \cdot 12H_2O$	6	44	Rubidium platinum fluoride, Rb ₂ PtF ₆	6	48
Rubidium amide, RbNH ₂	5m	73	Rubidium selenate, Rb ₂ SeO ₄	9m	44
Rubidium barium chromium oxide,			Rubidium silicon fluoride, Rb ₂ SiF ₆	6	49
Rb ₂ Ba(CrO ₄) ₂	14m	32	Rubidium strontium chloride,	_	- <i>(</i>
Rubidium barium molybdenum oxide,	15	50	RbSrCl ₃	7m	54
Rb ₂ Ba (MoO ₄) ₂	15m	59 45	Rubidium strontium chromium oxide,	15 m	64
Rubidium bromate, RbBrO ₃	8	45 43	Rb ₂ Sr(CrO ₄) ₂	15m	04
Rubidium bromide, RbBr	7	43	Rubidium strontium sulfate,	15m	65
Rubidium cadmium chloride, high form, RbCdCl ₃ (tetragonal)	5m	43	$Rb_2Sr(SO_4)_2$	8	48
Rubidium cadmium chloride,	Jiii	73	Rubidium tellurium bromide,	Ü	70
low form, RbCdCl ₃ (orthorhombic)	5m	41	Rb ₂ TeBr ₆	8	46
Rubidium cadmium sulfate,	Jui	7.	Rubidium tellurium chloride,	Ü	, ,
$Rb_2Cd_2(SO_4)_3$	7m	45	Rb ₂ TeCl ₆	8	48
Rubidium calcium chloride, RbCaCl ₃	7m	47	Rubidium tin chloride, Rb ₂ SnCl ₆	6	46
Rubidium calcium fluoride, RbCaF ₃	8m	57	Rubidium zinc fluoride, RbZnF ₃	7 m	57
Rubidium calcium sulfate,			Rubidium zinc sulfate hydrate,		
$Rb_2Ca_2(SO_4)_3$	7m	48	$Rb_2Zn(SO_4)_2 \cdot 6H_2O \dots$	7 m	55
Rubidium chlorate, RbClO ₃	8	47	Ruthenium, Ru	4	5
Rubidium chlorate, RbClO ₄	2m	30	Ruthenium titanium, RuTi	6m	86
Rubidium chloride, RbCl	4	41	Samarium arsenate, SmAsO ₄	4m	33
Rubidium chromium oxide, Rb ₂ CrO ₄	3m	46	Samarium arsenide, SmAs	4m	68
Rubidium chromium oxide, Rb ₂ Cr ₂ O ₇	15m	60	Samarium chloride, SmCl ₃	1m	40
Rubidium chromium sulfate hydrate,			Samarium chloride oxide, SmOCl	lm	43
$RbCr(SO_4)_2 \cdot 12H_2O$	6	47	Samarium fluoride, SmF ₃	lm	41
Rubidium cobalt(II) chloride,			Samarium oxide, Sm_2O_3 (cubic)	4m	34
RbCoCl ₃	6m	57	Samarium silver, SmAg	5 m	73
Rubidium cobalt fluoride, RbCoF ₃	8m	58	Samarium tin oxide, Sm ₂ Sn ₂ O ₇	8m	77
Rubidium cobalt sulfate,			Samarium vanadium oxide, SmVO ₄	5m	47
$Rb_2Co_2(SO_4)_3$	8m	59	Scandium arsenate, ScAsO ₄	4m	35
Rubidium copper chloride hydrate,	10-	/ 7	Scandium arsenide, ScAs	4m	68 66
Rb ₂ CuCl ₄ ·2H ₂ O	10m	47	Scandium boride, ScB ₂	17m	00

,	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Scandium oxide, Sc ₂ O ₃	3	27	Sodium beryllium calcium fluoride		
Scandium phosphate, ScPO ₄	8	50	silicate, leucophanite,		
Scandium silicate (thortveitite),	7_	E O	NaBeCaFSi ₂ O ₆	8m	138
Sc ₂ Si ₂ O ₇ Selenium, Se	7 m 5	5 8 5 4	Sodium borate, Na ₂ B ₄ O ₇ Sodium borate, Na ₂ B ₈ O ₁₃	16m 7m	64 160
Selenium oxide (selenolite), SeO ₂	7m	60	Sodium borate hydroxide hydrate	,	100
Silicon, Si	13m	3 5	(borax), $Na_2B_4O_5(OH)_4 \cdot 8H_2O$	16m	66
Silicon, Si (reference standard)	12m	2	Sodium boron hydride, NaBH ₄	9	51
Silicon nitride, β -Si ₃ N ₄ Silicon oxide (α or low	14m	116	Sodium bromate, NaBrO ₃	5 3	65 47
cristobalite), SiO ₂ (tetragonal)	10	48	Sodium bromide chloride,	3	47
Silicon oxide (a or low			NaBr _{.33} Cl _{.67}	11m	49
cristobalite), SiO ₂ (tetragonal)	3.5	100	Sodium bromide chloride,	2.2	5.0
(calculated pattern)	15m	180	NaBr _{.67} Cl _{.33} Sodium calcium aluminum fluoride	11m	50
SiO ₂ (hexagonal)	3	24	hydrate, thomsenolite,		
Silicon oxide (β or high			NaCaAlF ₆ ·H ₂ O	8m	132
cristobalite), SiO ₂ (cubic)	1	42	Sodium calcium carbonate hydrate,		
Silver, Ag	1 8m	23 2	pirssonite, Na ₂ Ca(CO ₃) ₂ ·2H ₂ O	9m	106
Silver arsenate, Ag ₃ AsO ₄	5	56	Sodium calcium phosphate, β-NaCaPO ₄ Sodium calcium silicate, Na ₂ CaSiO ₄	15m 10m	69 48
Silver arsenic sulfide,			Sodium calcium sulfate (glauberite)		
xanthoconite, Ag ₃ AsS ₃	8m	126	$Na_2Ca(SO_4)_2$	6m	59
Silver bromate, AgBrO ₃	5 4	57 46	Sodium carbonate hydrate (thermo-	0	c /.
Silver bromide (bromargyrite), AgBr Silver carbonate, Ag ₂ CO ₃	13m	46 36	natrite), $Na_2CO_3 \cdot H_2O$ Sodium carbonate sulfate, $Na_4CO_3SO_4$	8 11m	54 51
Silver chlorate, AgClO ₃	7	44	Sodium carbonate sulfate (burkeite)		31
Silver chloride (chlorargyrite),			Na ₆ CO ₃ (SO ₄) ₂	, 11m	52
AgC1	4	44	Sodium carbonate sulfate,		
Silver chromium oxide, Ag ₂ CrO ₄	12m	30 48	Na ₆ CO ₃ (SO ₄) ₂	11m	53
Silver cyanide, AgCN	9m 5m	53	Sodium carbonate sulfate, Na ₆ (CO ₃) ₂ SO ₄	11m	54
Silver iodate, AgIO ₄	9	49	Sodium chlorate, NaClO ₃	3	51
Silver iodide (iodargyrite), AgI			Sodium chlorate, NaClO ₄	_	
(hexagonal)	8	51	(orthorhombic)	7	49
Silver iodide, γ-AgI (cubic) Silver manganese oxide, AgMnO ₄	9 7m	48 155	Sodium chlorate hydrate, NaClO ₄ ·H ₂ O	17m	68
Silver mercury iodide, β-Ag ₂ HgI ₄	17m	67	Sodium chloride (halite), NaCl	2	41
Silver molybdenum oxide, Ag ₂ MoO ₄	7	45	Sodium chromium oxide, Na ₂ CrO ₄	9 m	48
Silver nitrate, AgNO ₃	5	59	Sodium chromium oxide hydrate,	0	۲.۵
Silver nitrite, AgNO ₂	5 lm	60 45	Na ₂ CrO ₄ ·4H ₂ O	9m	5 0
Silver(II) oxide nitrate, Ag ₇ 0 ₈ NO ₃	4	61	Na ₂ Cr ₂ O ₇ ·2H ₂ O	7m	62
Silver phosphate, Ag ₃ PO ₄	5	62	Sodium chromium oxide sulfate,		
Silver rhenium oxide, AgReO ₄	8	53	$Na_4(CrO_4)(SO_4)$	11m	55
Silver selenate, Ag ₂ SeO ₄ Silver sodium chloride,	2m	32	Sodium cobalt nitrite, Na ₃ Co(NO ₂) ₆ Sodium cobalt(II) sulfate hydrate,	15m	70
Ag _{0.5} Na _{0.5} Cl	8m	79	Na ₂ Co(SO ₄) ₂ ·4H ₂ O	6m	61
Silver sulfate, Ag ₂ SO ₄	13m	37	Sodium cyanate, NaCNO	2m	33
Silver sulfide (acanthite), Ag ₂ S	10	51	Sodium cyanide, NaCN (cubic)	1	78
Silver terbium, AgTb	5m 16m	74 62	Sodium cyanide, NaCN (orthorhombic) at 6 °C	1	79
Silver thulium, AgTm	5m	74	Sodium fluoride (villiaumite), NaF	1	63
Silver yttrium, AgY	5m	75	Sodium hydrogen carbonate hydrate,		
Sodium, Na	9m	105	trona, Na ₃ H(CO ₃) ₂ ·2H ₂ O	15m	71
Sodium aluminum chloride silicate,	7	150	Sodium hydrogen fluoride, NaHF ₂	5	6 3
sodalite, Na ₈ Al ₆ Cl ₂ (SiO ₄) ₆ Sodium aluminum fluoride (chiolite),	7m	158	Sodium hydrogen phosphate, Na ₃ H(PO ₃) ₄	10m	130
Na ₅ Al ₃ F ₁₄	16m	63	Sodium hydrogen silicate hydrate,		
Sodium aluminum sulfate hydrate			Na ₂ H ₂ SiO ₄ ·4H ₂ O	7 m	163
(soda alum), NaAl(SO ₄) ₂ ·12H ₂ O	15m	68	Sodium hydrogen sulfate hydrate,	0	. .
Sodium azide, α-NaN ₃ , at -90 to -100 °C	8m	129	NaHSO ₄ · H_2O	9m 4m	52 69
Sodium azide, β-NaN ₃	8m	130	Sodium iodate, NaIO ₃	7	47
Sodium beryllium calcium aluminum			Sodium iodate, NaIO ₄	7	48
fluoride oxide silicate, meliphanite	,		Sodium iodate hydrate, NaIO ₃ ·H ₂ O	17m	73
(Na _{0.63} Ca _{1.37})Be(Al _{0.13} Si _{1.87}) (F _{0.75} O _{6.25})	8m	135	Sodium iodide, NaI	4	31
. 0,10 0,20					

	Vol or			V-1	
	Vol. or Sec.	Page		Vol. or Sec.	Page
		6 -		500.	rage
Sodium iron fluoride, Na ₃ FeF ₆	9m	54	Strontium aluminum oxide, Sr ₃ Al ₂ O ₆	10m	52
Sodium lanthanum fluoride silicate, $(Na_2La_8)F_2(SiO_4)_6$	7m	64	Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36
Sodium lanthanum molybdenum oxide,	7 10	04	Strontium azide, $Sr(N_3)_2$ Strontium borate, SrB_2O_4	8m 3m	146 53
NaLa(MoO ₄) ₂	10m	49	Strontium borate, SrB ₄ O ₇	4m	36
Sodium magnesium aluminum boron			Strontium bromate hydrate,		
hydroxide silicate, dravite,	2	17	$Sr(Br0_3)_2 \cdot H_20 \dots$	17m	76
NaMg ₃ Al ₆ B ₃ (OH) ₄ Si ₆ O ₂₇ Sodium magnesium carbonate	3m	47	Strontium bromide fluoride, SrBrF	10m	54
(eitelite), Na ₂ Mg(CO ₃) ₂	11m	56	Strontium bromide hydrate, SrBr ₂ ·6H ₂ O	4	60
Sodium magnesium sulfate		_	Strontium carbonate (strontianite),		
(vanthoffite), Na ₆ Mg(SO ₄) ₄	15m	72	SrCO ₃	3	56
Sodium magnesium sulfate hydrate,	6-	63	Strontium chloride, SrCl ₂	4	40
bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O Sodium magnesium sulfate hydrate	6m	63	Strontium chloride fluoride, SrClF Strontium chloride hydrate,	10m	55
(loeweite), $Na_{12}Mg_7(SO_4)_{13}\cdot 15H_2O$	14m	35	SrCl ₂ ·2H ₂ O	11m	58
Sodium manganese(II) fluoride,			Strontium chloride hydrate,		00
NaMnF ₃	6m	65	SrCl ₂ ·6H ₂ O	4	58
Sodium manganese sulfate hydrate,	7.4		Strontium chloride hydroxide		
Na ₁₂ Mn ₇ (SO ₄) ₁₃ ·15H ₂ O	14m	37	phosphate, Sr ₅ Cl _{.65} (OH) _{.35} (PO ₄) ₃	11m	60
Sodium mercury(II) chloride hydrate, NaHgCl ₃ ·2H ₂ O	6m	66	Strontium chromium oxide, SrCr ₂ O ₇	. 17m	77
Sodium molybdenum oxide, Na ₂ MoO ₄	1m	46	Strontium chromium oxide, Sr ₂ CrO ₄	16m	71
Sodium molybdenum oxide, Na ₂ Mo ₂ O ₇	9m	110	Strontium chromium oxide hydrate,		
Sodium neodymium fluoride silicate,			SrCr ₂ 0 ₇ ·3H ₂ 0	17m	79
$(Na_2Nd_8)F_2(SiO_4)_6 \dots$	7m	66	Strontium fluoride, SrF ₂	5	67
Sodium nickel(II) sulfate hydrate,	6-	68	Strontium hydroxide, Sr(OH) ₂	13m	41
$Na_2Ni(SO_4)_2 \cdot 4H_2O$ Sodium nitrate (soda niter), $NaNO_3$	6m 6	50	Strontium hydroxide hydrate, Sr(OH) ₂ ·H ₂ O	13m	42
Sodium nitrite, NaNO ₂	4	62	Strontium hydroxide hydrate,	1311	72
Sodium oxide, Na ₂ 0	10m	134	Sr(OH) ₂ ·8H ₂ O	13m	43
Sodium phosphate, Na ₃ P ₃ O ₉	3m	49	Strontium indium hydroxide,		
Sodium phosphate hydrate,	•	<i></i> 0	Sr ₃ In ₂ (OH) ₁₂	6m	76
$Na_3P_3O_9 \cdot H_2O$	3m	50	Strontium iodide hydrate,	8	58
α-Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic)	13m	39	SrI ₂ ·6H ₂ O Strontium manganese oxide,	0	30
Sodium phosphate hydrate,	20	0,7	SrMnO ₃ (cubic)	10m	56
β -Na ₄ P ₄ O ₁₂ ·4H ₂ O (triclinic)	2m	35	Strontium manganese oxide,		
Sodium phosphate hydrate,	_	_,	SrMnO ₃ (hexagonal)	10m	58
Na ₆ P ₆ O ₁₈ ·6H ₂ O	5m	54	Strontium molybdenum oxide, SrMoO ₄	7	50
Sodium praseodymium fluoride silicate, (Na ₂ Pr ₈)F ₂ (SiO ₄) ₆	7m	68	Strontium nitrate, $Sr(NO_3)_2$ Strontium oxide, SrO	12m 5	31 68
Sodium selenate, Na ₂ SeO ₄	9m	55	Strontium oxide, SrO ₂	6	52
Sodium selenide, Na ₂ Se	10m	135	Strontium oxide hydrate, SrO ₂ ·8H ₂ O	11m	61
Sodium silicate, $\alpha(III)$, Na ₂ Si ₂ O ₅	8m	141	Strontium phosphate, α -Sr ₂ P ₂ O ₇	11m	62
Sodium silicate, β-Na ₂ Si ₂ O ₅	10m	136	Strontium phosphate, α -Sr ₃ (PO ₄) ₂	11m	64
Sodium silicon fluoride (malladrite), Na ₂ SiF ₆	16m	68	Strontium scandium oxide hydrate, Sr ₃ Sc ₂ O ₆ ·6H ₂ O	6m	78
Sodium sulfate, Na ₂ SO ₄	11m	57	Strontium silicate, Sr ₃ SiO ₅		44
Sodium sulfate (thenardite), Na ₂ SO ₄	2	59	Strontium sulfate (celestite),		
Sodium sulfate hydrate,			SrSO ₄		61
Na ₂ S ₂ O ₃ ·5H ₂ O	17m	74	Strontium sulfide, SrS		52
Sodium sulfide, Na SO	10m	140	Strontium telluride, SrTe	4m	69 80
Sodium sulfite, Na ₂ SO ₃ Sodium telluride, Na ₂ Te	3 10m	60 141	Strontium tin oxide, SrSnO ₃ Strontium titanium oxide, SrTiO ₃	8m 3	44
Sodium tin fluoride, NaSn ₂ F ₅	7m	166	Strontium tungsten oxide, SrWO ₄	7	53
Sodium titanium oxide, Na ₂ Ti ₃ O ₇	16m	69	Strontium tungsten oxide, Sr ₂ WO ₅		32
Sodium tungsten oxide, Na ₂ WO ₄	lm	47	Strontium vanadium oxide, Sr ₃ (VO ₄) ₂		73
Sodium tungsten(VI) oxide hydrate,	2	22	Strontium zirconium oxide, SrZrO ₃	9	51 54
Na ₂ WO ₄ ·2H ₂ O Sodium zinc fluoride, NaZnF ₃	2m 6m	33 74	Sulfamic acid, H ₂ NSO ₃ H Sulfur, S (orthorhombic)		54 54
Sodium zinc sulfate hydrate,	OIII	, 4	Tantalum, Ta	1	29
$Na_2Zn(SO_4)_2 \cdot 4H_2O \dots$	6m	72	Tantalum silicide, TaSi ₂		59
Sodium zirconium fluoride,			Tellurium, Te	1	26
Na ₇ Zr ₆ F ₃₁	8m	144	Tellurium(IV) oxide (paratellurite)		E (
Strontium aluminum hydroxide,	10m	50	TeO ₂ (tetragonal)		56
Sr ₃ Al ₂ (OH) ₁₂	10111	50	TeO ₂ (tetragonal)		55

	Vol. or Sec.	Page	(Vol. or Sec.	Page
	Sec.	rage		bec.	Page
Tellurium(IV) oxide, tellurite,			Thulium arsenate, TmAsO ₄	3m	56
TeO ₂ (orthorhombic)	9	57	Thulium arsenide, TmAs	4m	71
Terbium arsenate, TbAsO ₄	3m	54	Thulium nitride, TmN	4m 9	71 58
Terbium arsenide, TbAs Terbium nitride, TbN	5 m 4 m	75 70	Thulium oxide, Tm_2O_3	4m	72
Terbium phosphide, TbP	5m	76	Thulium vanadium oxide, TmVO ₄	5m	57
Terbium selenide, TbSe	5m	76	Tin, α-Sn (cubic)	2	12
Terbium sulfide, TbS	5 m	77	Tin, β-Sn (tetragonal)	1	24
Terbium telluride, TbTe	5m	77	Tin arsenide, SnAs	4m	37
Terbium vanadium oxide, TbVO ₄	5m	56	Tin arsenide, $Sn_{3.8}As_3$	15m	76
Thallium, α-Tl	16m	73	Tin chloride hydrate, SnCl ₂ ·2H ₂ O	17m	84
Thallium aluminum sulfate hydrate,	6	53	Tin (II) fluoride, SnF ₂	3m 13m	51 46
$T1A1(SO_4)_2 \cdot 12H_2O$	2m	33 37	Tin hydrogen phosphate, SnHPO ₄ Tin(IV) iodide, SnI ₄	5	71
Thallium azide, TlN ₃	8m	82	Tin(II) oxide (romarchite), SnO	4	28
Thallium(I) bromate, TlBrO ₃	8	60	Tin(IV) oxide (cassiterite), SnO ₂	i	54
Thallium bromide, TlBr	7	57	Tin sulfide (berndtite), β -SnS ₂	9m	57
Thallium cadmium sulfate,			Tin(II) telluride, SnTe	7	61
$Tl_2Cd_2(SO_4)_3$	8m	83	Titanium, Ti	3	4
Thallium(1) chlorate, TlClO ₄	2m	38	Titanium(III) oxide, TiO _{1.515}	9	59
Thallium(1) chlorate, TlClO ₃	8	61	Titanium oxide (anatase), TiO ₂	7m	82
Thallium (1) chloride, TlCl	2	51	Titanium oxide, brookite, TiO ₂	2	E 7
Thallium chromium oxide, Tl ₂ CrO ₄	3m	54	(orthorhombic)	3 m 7 m	57 83
Thallium chromium sulfate hydrate, $T1Cr(SO_4)_2 \cdot 12H_2O \dots$	6	55	Titanium silicide, Ti ₅ Si ₃	8	64
Thallium cobalt sulfate,	O	33	Titanium sulfide, TiS ₂	4m	72
$Tl_2Co_2(SO_4)_3$	8 m	85	Titanium sulfide, Ti ₂ S	8m	149
Thallium cobalt sulfate hydrate,			Tungsten, W	1	28
$Tl_2Co(SO_4)_2 \cdot 6H_2O \dots$	7m	70	Tungsten, W (reference standard)	8m	2
Thallium copper sulfate hydrate,			Tungsten sulfide (tungstenite), WS ₂	8	65
$T1_2Cu(SO_4)_2 \cdot 6H_2O \dots$	7 m	72	Uranium oxide, UO	5 m	78
Thallium fluoride, TIF	16m	74	Uranium oxide (uraninite), UO ₂	_ 2	33
Thallium gallium sulfate hydrate,	,	F 7	Uranium selenide, USe	5 m	78
$T1Ga(SO_4)_2 \cdot 12H_2O$	6	57	Uranium telluride, UTe	4m	73
Thallium(1) iodate, TIIO ₃ Thallium(I) iodide, TII	8	62	Vanadium, V	9m	58
(orthorhombic)	4	53	V_2O_5	8	66
Thallium iron sulfate hydrate,	·	33	Vanadium sulfide, α-V ₃ S	14m	118
$Tl_2Fe(SO_4)_2 \cdot 6H_2O \dots$	8m	87	Vanadium sulfide, β -V ₃ S	14m	120
Thallium lead sulfate,			Ytterbium arsenate, YbAsO ₄	4m	38
$Tl_2Pb(SO_4)_2$	15m	74	Ytterbium arsenide, YbAs	4m	73
Thallium magnesium chromium oxide,	0	0.0	Ytterbium nitride, YbN	4m	74
$Tl_2Mg_2(CrO_4)_3$	8m	89	Ytterbium oxide, Yb ₂ O ₃	6m	80
Thallium magnesium sulfate hydrate,	7m	74	Ytterbium selenide, YbSe Ytterbium telluride, YbTe	5 m 5 m	79 79
Tl ₂ Mg(SO ₄) ₂ ·6H ₂ O Thallium manganese sulfate,	/ 111	74	Ytterbium(Ill) vanadium oxide,	3111	13
$Tl_2Mn_2(SO_4)_3$	7m	76	YbVO ₄	5m	58
Thallium nickel sulfate hydrate,	,		Yttrium arsenate, YAsO ₄	2m	39
Tl ₂ Ni(SO ₄) ₂ ·6H ₂ O	7 m	78	Yttrium arsenide, YAs	4m	74
Thallium(I) nitrate, TlNO ₃	6	58	Yttrium chloride oxide, YC10	1m	51
Thallium oxide (avicennite), Tl ₂ O ₃	16m	77	Yttrium oxide, Y ₂ O ₃	3	28
Thallium(III) oxide, Tl ₂ O ₃	2	28	Yttrium phosphate (xenotime), YPO ₄	8	67
Thallium(I) phosphate, Tl ₃ PO ₄	7	58	Yttrium sulfide, YS	5m	80
Thallium(III) phosphate, TlPO ₄ Thallium platinum chloride,	7	59	Yttrium telluride, YTe	4m 11m	75 113
Tl ₂ PtCl ₆	5	70	Yttrium vanadium oxide, YVO ₄	5m	59
Thallium silicon fluoride, Tl ₂ SiF ₆	6	56	Zinc, Zn	1	16
Thallium strontium sulfate,			Zinc aluminum oxide (gahnite),		
$Tl_2Sr(SO_4)_2$	15m	75	ZnAl ₂ 0 ₄	2	38
Thallium(I) sulfate, Tl ₂ SO ₄	6	59	Zinc ammine bromide, Zn(NH ₃) ₂ Br ₂	11m	68
Thallium(I) thiocyanate, TlCNS	8	63	Zinc ammine chloride, Zn(NH ₃) ₂ Cl ₂	10m	59
Thallium tin chloride, Tl ₂ SnCl ₆	6	54	Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Thallium(I) tungsten oxide, Tl ₂ WO ₄ Thallium zinc sulfate hydrate,	lm	48	Zinc borate, $Zn_4B_6O_{13}$	13m	48 69
Tl ₂ Zn(SO ₄) ₂ ·6H ₂ O	7 m	80	Zinc carbonate, smithsonite, ZnCO ₃ Zinc chlorate hydrate,	8	09
Thorium arsenide, ThAs	4m	70	$Zn(ClO_4)_2 \cdot 6H_2O \cdot \dots $	16m	79
Thorium oxide (thorianite), ThO ₂	1	57	Zinc chromium oxide, ZnCr ₂ O ₄	9m	59
			Zinc cobalt oxide, ZnCo ₂ O ₄	10m	60

	Vol. or	
	Sec.	Page
Zinc cyanide, Zn(CN) ₂	5	73
Zinc fluoride, ZnF ₂	6	60
Zinc fluoride hydrate. ZnFo.4HoO	11m	69
Zinc fluoride hydrate, ZnF ₂ ·4H ₂ O Zinc germanium oxide, Zn ₂ GeO ₄	10	56
Zinc hydroxide silicate hydrate,	10	30
hemimorphite, $Zn_4(OH)_2Si_2O_7 \cdot H_2O$	2	62
Zinc iodide, ZnI ₂	9	60
Zinc iron oxide (franklinite),	,	00
ZnFe ₂ O ₄	9m	60
Zinc manganese oxide (hetaerolite),	J.I.	00
ZnMn ₂ O ₄	10m	61
Zinc molybdenum oxide. ZnoMooOo	7m	173
Zinc nitrate hydrate,	, 111	1,3
α -Zn(NO ₃) ₂ ·6H ₂ O	12m	36
Zinc oxide (zincite), ZnO	2	25
Zinc phosphate, α -Zn ₃ (PO ₄) ₂	16m	80
Zinc phosphate, β -Zn ₃ (PO ₄) ₂	16m	81
Zinc phosphate, γ -Zn ₃ (PO ₄) ₂	16m	83
Zinc phosphate hydrate (hopeite),	10111	03
Zn ₃ (PO ₄) ₂ ·4H ₂ O	16m	85
Zinc selenide, ZnSe	3	23
Zinc silicate (willemite), Zn ₂ SiO ₄	7	62
Zinc silicon fluoride hydrate,	•	02
ZnSiF ₆ ·6H ₂ O	8	70
Zinc sulfate (zinkosite), ZnSO ₄	7	64
Zinc sulfate hydrate (goslarite),	•	0 7
ZnSO ₄ ·7H ₂ O	8	71
Zinc sulfide (wurtzite), \alpha-ZnS	Ü	, _
(hexagonal)	2	14
Zinc sulfide (sphaelerite), β-ZnS	2	17
(cubic)	2	16
Zinc telluride, ZnTe	3m	58
Zinc tin oxide, Zn ₂ SnO ₄	10m	62
Zinc titanium oxide, ZnTiO ₃	13m	49
Zinc titanium oxide, Zn ₂ TiO ₄	12m	37
Zinc tungsten oxide (sanmartinite),	120	٥,
ZnWO ₄	2m	40
Zirconium, α-Zr	2	11
Zirconium hydride, ZrH ₂	5 m	60
Zirconium iodate, Zr(IO ₃) ₄	lm	51
Zirconium nitride, ZrN	5m	80
Zirconium oxide, ZrO	5m	81
Zirconium phosphide, ZrP	4m	75
Zirconium silicate, zircon, ZrSiO ₄	4	68
Zirconium silicide, ZrSi ₂	17m	86
Zirconium sulfate hydrate	1 / III	00
(zircosulfate), Zr(SO ₄) ₂ ·4H ₂ O	7	66
(======================================	•	•

		Vol. or	
		Sec.	Page
C7H5C1O2	m-Chlorobenzoic acid	16m	30
C ₇ H ₅ FO ₂	p-Fluorobenzoic acid	16m	36
C ₇ H ₉ NO ₂ S	Methyl sulfonanilide	9m	78
C ₇ H ₁₂ O ₄	Pimelic acid	. 7m	153
C8H4Hg2O4	Mercury o-phthalate	10m	113
C8H5KO4	Potassium hydrogen o-phthalate	4m	30
C ₈ H ₅ O ₄ Tl	Thallium hydrogen phthalate	16m	75
C ₈ H ₇ N ₃ O ₇	2,4,6-Trinitrophenetole	8m	152
C ₈ H ₈ O ₃	p-Anisic acid	16m	11
C ₈ H ₉ NO	Acetanilide (calc. pattern)	14m 16m	38
C ₈ H ₉ NO	Acetanilide Sodium barbital	16m	7 157
C ₈ H ₁₁ N ₂ NaO ₃	Barbital, form I	15m	126
$C_8H_{12}N_2O_3$ $C_8H_{12}N_2O_3$	Barbital, form II	15m	128
C ₈ H ₁₂ N ₂ O ₃	Barbital, form IV	15m	130
C ₉ H ₁₄ N ₂ O ₃	Metharbital	15m	177
$C_{10}H_{12}N_2O_3$	Allobarbital	14m	41
C ₁₀ H ₁₆ ClNO	(-)-Ephedrine hydrochloride	16m	124
$C_{11}H_{16}N_2O_3$	Vinbarbital, form I	16m	162
C ₁₁ H ₁₈ N ₂ O ₃	Amobarbital, form I	15m	114
$C_{11}H_{18}N_{2}O_{3}$	Amobarbital, form II	15m	117
$C_{12}H_{10}N_2$	Azobenzene	7 m	86
$C_{12}H_{12}N_2O_3$	Phenobarbital, form III	16m	144
C ₁₂ H ₁₆ Cl ₂ CuN ₈	Copper tetrapyrazole chloride	8m	31
C ₁₂ H ₁₆ Cl ₂ N ₈ Ni	Nickel tetrapyrazole chloride	8m	44
C ₁₂ H ₁₆ CuN ₁₀ O ₆	Copper tetraimidazole nitrate	13m	24
C ₁₂ H ₁₆ N ₂	(N,N)-Dimethyltryptamine	14m	109
C ₁₂ H ₁₆ N ₂ O	Bufotenine	15m	133
C ₁₂ H ₁₆ N ₂ O	Psilocin Sucrose	16m 11m	152 66
C ₁₂ H ₂₂ O ₁₁	Hexamethylenediammonium adipate	7 m	121
$C_{12}H_{26}N_2O_4$ $C_{13}H_{21}C1N_2O_2$	Procaine hydrochloride	16m	149
C ₁₃ H ₂₁ N ₂ O ₄ P	Psilocybin methanolate	16m	154
C ₁₄ H ₁₁ FO	4-Acetyl-2'-fluorodiphenyl	8m	91
C ₁₄ H ₂₀ ClN ₃ S	Methapyrilene hydrochloride	14m	112
C ₁₅ H ₁₂ O ₂	Dibenzoylmethane	7m	115
C ₁₆ H ₁₃ ClN ₂ O	Diazepam	14m	106
C ₁₆ H ₁₃ N	N-Phenyl-2-naphthylamine	6m	29
$C_{17}H_{19}ClN_2S$	Chlorpromazine	14m	60
$C_{17}H_{20}C1NO_3 \cdot 3H_2O$	Morphine hydrochloride hydrate	16m	133
C ₁₇ H ₂₂ ClNO ₄	L-Cocaine hydrochloride	16m	114
C ₁₇ H ₂₆ ClN	Phencyclidine hydrochloride	16m	141
C ₁₈ H ₂₂ BrNO ₃ ·2H ₂ O	Codeine hydrobromide hydrate Cadmium hexaimidazole nitrate	16m 8m	117 23
C ₁₈ H ₂₄ CdN ₁₄ O ₆ C ₁₈ H ₂₄ N ₁₄ NiO ₆	Nickel hexaimidazole nitrate	7m	27
C ₁₈ H ₂ 8N ₂ O ₄ S	(+)-Amphetamine sulfate	15m	119
C ₁₉ H ₂₂ ClNO ₄ ·2H ₂ O	Naloxone hydrochloride hydrate	16m	136
C ₁₉ H ₂₂ N ₂ O	Cinchonine	17m	26
C ₁₉ H ₂₅ ClN ₂	Imipramine hydrochloride	16m	129
C20H26C1NO3	Benactyzine hydrochloride	16m	92
C20H34	α-Dihydrophyllocladene, hartite		
	(or bombiccite)	16m	122
C ₂₁ H ₂₃ C1FNO ₂	Haloperidol	16m	127
$C_{21}H_{30}O_{2}$	Cannabidiol	16m	111
C ₂₂ H ₂₅ C1N ₂ OS·2H ₂ O	Clopenthixol hydrate	17m	28
C ₂₂ H ₃₀ O ₄	Δ ⁹ -Tetrahydrocannabinolic acid B	16m	160
$C_{24}H_{32}N_2O_2Pd$	Palladium bis-(N-isopropyl-3-	7	1 /. /.
C ₂₅ H ₁₅ N ₆	ethylsalicylaldiminate) N-Methylphenazinium-7,7,8,8-	7m	144
~25 ¹¹ 15 ¹¹ 6	tetracyanoquinodimethanide	7 m	146
C33H40N2O9	Reserpine	8m	123
33-40-2-9		Oiii	123

CUMULATIVE ORGANIC FORMULA INDEX

		Vol. or	
		Sec.	Page
CH4N2O	Urea	7	61
CH ₄ N ₂ S	Thiourea	17m	83
CH ₅ NO ₂	Ammonium formate	11m	9
CH ₅ N ₃ ·HCl	Guanidinium chloride	17m	35
CH ₅ N ₃ S	Thiosemicarbazide	17m	81
$C_2Ag_2O_4$	Silver oxalate	9m	47
C ₂ FeO ₄ ·2H ₂ O	Iron oxalate hydrate (humboldtine)	10m	24
C ₂ HNaO ₄ ·H ₂ O	Sodium hydrogen oxalate hydrate	17m	72
C ₂ H ₂ CaO ₄	Calcium formate	8	16
C ₂ H ₂ O ₄ ·2H ₂ O	Oxalic acid hydrate Lead formate	16m 8	55 30
C ₂ H ₂ O ₄ Pb C ₂ H ₂ O ₄ Sr	Strontium formate	8	55
C ₂ H ₂ O ₄ Sr·2H ₂ O	Strontium formate hydrate (orthorhombic)	8	56
C ₂ H ₃ KO ₄	Potassium formate-formic acid complex	9m	93
C ₂ H ₃ NaO ₂ ·3H ₂ O	Sodium acetate hydrate	15m	66
C ₂ H ₄ N ₂ O ₂	Glyoxime	8m	102
C2H5NO2	α-Glycine	17m	34
C ₂ H ₇ NO ₂	Ammonium acetate	8m	95
$C_2H_8N_2O_4 \cdot H_2O$	Ammonium oxalate hydrate (oxammite)	7	5
$C_2K_2O_4 \cdot H_2O$	Potassium oxalate hydrate	9m-	39
$C_2Li_2O_4$	Lithium oxalate	10m	34
C ₂ Na ₂ O ₄	Sodium oxalate	6m	70
C ₂ O ₄ Rb ₂ ·H ₂ O ₂	Rubidium oxalate perhydrate	9m	102
C ₃ H ₇ NO ₂	L-Alanine	8m	93
C ₃ H ₇ NO ₂ S	L-Cysteine	11m	86
C ₃ H ₁₀ ClN	Trimethylammonium chloride	9m 17m	113 60
C ₄ H ₃ KO ₈ • 2H ₂ O C ₄ H ₄ CaO ₅ • 2H ₂ O	Potassium hydrogen oxalate hydrate Calcium malate hydrate	17m	76
C ₄ H ₄ KN ₂ O ₆ ·4H ₂ O	Potassium sodium tartrate hydrate	15m	55
C ₄ H ₄ NO ₈ Y·H ₂ O	Ammonium yttrium oxalate hydrate	8m	97
C ₄ H ₄ Na ₂ O ₆ ·2H ₂ O	Sodium D-tartrate hydrate	11m	110
C ₄ H ₆ CoO ₄ · 4H ₂ O	Cobalt acetate hydrate	12m	19
C ₄ H ₆ Hg ₂ O ₄	Mercury acetate	17m	51
C4H6NiO4·4H2O	Nickel acetate hydrate	13m	31
C4H6O6	D-Tartaric acid	7m	168
C ₄ H ₇ N ₃ O	Creatinine	15m	31
$C_4H_8N_8O_8$	α-HMX	11m	100
C4H8N8O8	β-HMX	11m	102
C ₄ H ₈ N ₈ O ₈	Octahydro-1,3,5,7-tetranitro-	11	100
CHNO	1,3,5,7-tetrazocine, alpha-	11m	100
C ₄ H ₈ N ₈ O ₈	Octahydro-1,3,5,7-tetranitro-	11m	102
C4H22B20	1,3,5,7-tetrazocine, beta- bis-(o-Dodecacarborane)	6m	7
C ₄ n ₂₂ D ₂₀ C ₅ H ₄ N ₄ O ₃	Uric acid, phase 1 (calc. pattern)	8m	154
C ₅ H ₄ N ₄ O ₃	Uric acid, phase 1	16m	78
C ₅ H ₇ CuNO ₄ • 2H ₂ O	Copper glutamate hydrate	7m	110
C ₅ H ₇ NO ₄ Zn·2H ₂ O	Zinc glutamate hydrate	7m	170
C5H8NNaO4·H2O	Sodium glutamate hydrate	17m	70
C ₅ H ₉ NO ₄	β-L-Glutamic acid	17m	32
C5H12O4	Pentaerythritol	17m	55
C ₆ H ₃ N ₃ O ₇	Picric acid	16m	56
C ₆ H ₅ NO ₂	Nicotinic acid	16m	54
C ₆ H ₆ O ₂	γ-Hydroquinone	8m	107
C ₆ H ₈ Cl ₂ N ₄ Zn	Zinc diimidazole chloride	7m	123
C ₆ H ₈ N ₂ ·HCl	Phenylhydrazine hydrochloride	17m	56
C ₆ H ₈ O ₆	L-Ascorbic acid	8m	99 37
C ₆ H ₁₂ N ₄	Hexamethylenetetramine	17m 11m	37 28
C ₆ H ₁₂ O ₆	Dextrose α-D-Glucose	11m	28
C ₆ H ₁₂ O ₆ C ₆ H ₁₅ H ₀ O ₁₂ S ₃ ·9H ₂ O	Holmium ethylsulfate hydrate	1m	18
C ₆ H ₁₅ NdO ₁₂ S ₃ ·9H ₂ O	Neodymium ethylsulfate hydrate	9	41
C ₇ H ₅ BrO ₂	o-Bromobenzoic acid	16m	22
- 132			

CUMULATIVE ORGANIC NAME INDEX

		Vol. or Sec.	Page
Acetanilide	C ₈ H ₉ NO (calc. pattern)	14m	38
Acetanilide	C ₈ H ₉ NO	16m 8m	7 91
4-Acetyl-2'-fluorodiphenyl Alanine, L-	C ₁₄ H ₁₁ FO CH ₃ CHNH ₂ CO ₂ H	8m	93
Allobarbital	C ₁₀ H ₁₂ N ₂ O ₃	14m	41
Amobarbital, form I,	C ₁₁ H ₁₈ N ₂ O ₃	15m	114
Amobarbital, form II	C ₁₁ H ₁₈ N ₂ O ₃	15m	117
Ammonium acetate	NH ₄ ·CH ₃ CO ₂	8m	95
Ammonium formate	NH ₄ HCO ₂	llm	9
Ammonium oxalate hydrate (oxammite)	$(NH_4)_2C_2O_4\cdot H_2O$.7	5
Ammonium yttrium oxalate hydrate	$NH_4Y(C_2O_4)_2 \cdot H_2O$	8m	97
Amphetamine sulfate, (+)-	C ₁₈ H ₂₈ N ₂ O ₄ S	15m	119
p-Anisic acid Ascorbic acid, L-	C ₈ H ₈ O ₃	16m 8m	11 99
Azobenzene	$C_6H_8O_6$ $C_6H_5NNC_6H_5$	7m	86
Barbital, form I,	C ₈ H ₁₂ N ₂ O ₃	15m	126
Barbital, form II,	C ₈ H ₁₂ N ₂ O ₃	15m	128
Barbital, form IV,	C ₈ H ₁₂ N ₂ O ₃	15m	130
Benactyzine hydrochloride	C20H26C1NO3	16m	92
o-Bromobenzoic acid	C7H5BrO2	16m	22
Bufotenine	$C_{12}H_{16}N_2O$	15m	133
Cadmium hexaimidazole nitrate	Cd(C3H4N2)6(NO3)2	8m	23
Calcium formate	Ca(HCO ₂) ₂	8	16
Calcium malate hydrate,	$Ca(O_2C)_2(CH_2CHOH) \cdot 2H_2O$	10m	76
Cannabidiol	C ₂₁ H ₃₀ O ₂	16m	111
m-Chlorobenzoic acid	C ₇ H ₅ ClO ₂	16m 14m	30 60
Chlorpromazine Cinchonine	C ₁₇ H ₁₉ ClN ₂ S	14m 17m	26
Clopenthixol hydrate	C ₁₉ H ₂₂ N ₂ O C ₂₂ H ₂₅ C1N ₂ OS·2H ₂ O	17m	28
Cobalt acetate hydrate	Co(C ₂ H ₃ O ₂) ₂ ·4H ₂ O	12m	19
Cocaine hydrochloride, L-	C ₁₇ H ₂₂ ClNO ₄	16m	114
Codeine hydrobromide hydrate	C ₁₈ H ₂₂ BrNO ₃ ·2H ₂ O	16m	117
Copper glutamate hydrate	$Cu(O_2C)_2(H_2NCHCH_2CH_2) \cdot 2H_2O$	7m	110
Copper tetraimidazole nitrate	$Cu(C_3H_4N_2)_4(NO_3)_2$	13m	24
Copper tetrapyrazole chloride	$Cu(C_3H_4N_2)_4Cl_2$	8m	31
Creatinine	C ₄ H ₇ N ₃ O	15m	31
Cysteine, L-	HSCH ₂ ·CH(NH ₂)·COOH	11m	86
Dextrose	C ₆ H ₁₂ O ₆	11m	28
Diazepam Dibenzeylmethene	C ₁₆ H ₁₃ ClN ₂ O	14m 7m	106 115
Dibenzoylmethane α-Dihydrophyllocladene, hartite (or	(C ₆ H ₅ CO) ₂ CH ₂		
bombiccite)	C ₂₀ H ₃₄	16m	122
(N,N)-Dimethyltryptamine	C ₁₂ H ₁₆ N ₂	14m	109
bis-(o-Dodecacarborane) Ephedrine hydrochloride, (-)-	C ₄ B ₂₀ H ₂₂ C ₁₀ H ₁₆ C1NO	6m 16m	7 124
p-Fluorobenzoic acid	C ₇ H ₅ FO ₂	16m	36
Glucose, \alpha-D-	C ₆ H ₁₂ O ₆	11m	28
Glutamic acid, β-L-	C ₅ H ₉ NO ₄	17m	32
α-Glycine	C ₂ H ₅ NO ₂	17m	34
Glyoxime	H ₂ C ₂ (NOH) ₂	8m	102
Guanidinium chloride	CH ₅ N ₃ ⋅HC1	17m	35
Haloperidol	C21H23ClFNO2	16m	127
Hexamethylenediammonium adipate,	(CH2)4(CO2H3N)2(CH2)6	7m	121
Hexamethylenetetramine	C ₆ H ₁₂ N ₄	17m	37
α-HMX	C4H ₈ N ₈ O ₈	11m	100
β-HMX Holmium ethylculfate hydrate	C ₄ H ₈ N ₈ O ₈	llm lm	102 18
Holmium ethylsulfate hydrate Y-Hydroquinone	Ho[(C ₂ H ₅)SO ₄] ₃ ·9H ₂ O HOC ₆ H ₄ OH	1m 8m	107
Imipramine hydrochloride	$C_{19}H_{25}C1N_2$	16m	129
Iron oxalate hydrate (humboldtine)	FeC ₂ O ₄ • 2H ₂ O	10m	24
Lead formate	Pb(HCO ₂) ₂	8	30
Lithium oxalate	Li ₂ C ₂ O ₄	10m	34

		Vol. or	
		Sec.	Page
Mercury acetate	C ₄ H ₆ Hg ₂ O ₄	17m	51
Mercury o-phthalate	C ₆ H ₄ (CO ₂ H ₈) ₂	10m	113
Methapyrilene hydrochloride,	C ₁₄ H ₂₀ ClN ₃ S	14m	112
Metharbital	C ₉ H ₁₄ N ₂ O ₃	15m	177
Methyl sulfonanilide N-Methylphenazinium-7,7,8,8-tetra-	C ₆ H ₅ NHSO ₂ CH ₃	9m	78
cyanoquinodimethanide	C ₂₅ H ₁₅ N ₆	7m	146
Morphine hydrochloride hydrate	$C_{17}H_{20}C1NO_3 \cdot 3H_2O$	16m	133
Naloxone hydrochloride hydrate	C ₁₉ H ₂₂ ClNO ₄ • 2H ₂ O	16m	136
2-Naphthylamine, N-phenyl-	C ₁₀ H ₇ NHC ₆ H ₅	6m	29
Neodymium ethylsulfate hydrate	$Nd[(C_2H_5)SO_4]_3 \cdot 9H_2O$	9	41
Nickel acetate hydrate	Ni(C ₂ H ₃ O ₂) ₂ ·4H ₂ O	13m	31
Nickel hexaimidazole nitrate	$Ni(C_3H_4N_2)_6(NO_3)_2$	7m	27
Nickel tetrapyrazole chloride	Ni(C ₃ H ₄ N ₂) ₄ Cl ₂	8m	44
Nicotinic acid	C ₆ H ₅ NO ₂	16m	54
Octahydro-1,3,5,7-tetranitro-	0 0 2		
1,3,5,7-tetrazocine (α-HMX)	$C_4H_8N_8O_8$	11m	100
Octahydro-1,3,5,7-tetranitro-			
1,3,5,7-tetrazocine (β-HMX)	C4H8N8O8	11m	102
Oxalic acid hydrate	$C_2H_2O_4 \cdot 2H_2O$	16m	55
Palladium bis-(N-isopropyl-3-			
ethylsalicylaldiminate),	$Pd(C_{12}H_{16}NO)_2$	7m	144
Pentaerythritol	C ₅ H ₁₂ O ₄	17m	55
Phencyclidine hydrochloride	C ₁₇ H ₂₆ ClN	16m	141
Phenobarbital, form III	$C_{12}H_{12}N_2O_3$	16m	144
Phenylhydrazine hydrochloride	C ₆ H ₈ N ₂ ·HCl	17m	56
Picric acid	C ₆ H ₃ N ₃ O ₇	16m	56
Pimelic acid	(CH2)5(CO2H)2	7m	153
Potassium formate-formic acid complex	KO ₂ CH·HO ₂ CH	9m	93
Potassium hydrogen o-phthalate,	C ₆ H ₄ (COOH)(COOK)	4m	30
Potassium hydrogen oxalate hydrate	C ₄ H ₃ KO ₈ ·2H ₂ O	17m	60
Potassium oxalate hydrate	K ₂ C ₂ O ₄ ·H ₂ O	9m	39
Potassium oxalate perhydrate	K ₂ C ₂ O ₄ •H ₂ O ₂	9m 15m	96 55
Potassium sodium tartrate hydrate	C ₄ H ₄ KNaO ₆ ·4H ₂ O	16m	149
Procaine hydrochloride	C ₁₃ H ₂₁ ClN ₂ O ₂	16m	152
Psilocin Psilocybin methanolate	C ₁₂ H ₁₆ N ₂ O	16m	154
Reserpine	C ₁₃ H ₂₁ N ₂ O ₄ P C ₃₃ H _{4O} N ₂ O ₉	8m	123
Rubidium oxalate perhydrate	$Rb_2C_2O_4 \cdot H_2O_2$	9m	102
Silver oxalate	Ag ₂ C ₂ O ₄	9m	47
Sodium acetate hydrate	C ₂ H ₃ NaO ₂ ·3H ₂ O	15m	66
Sodium barbital	C ₈ H ₁₁ N ₂ NaO ₃	16m	157
Sodium glutamate hydrate	C ₅ H ₈ NNaO ₄ ·H ₂ O	17m	70
Sodium hydrogen oxalate hydrate	C2HNaO4·H2O	17m	72
Sodium oxalate	Na ₂ C ₂ O ₄	6m	70
Sodium D-tartrate hydrate	(CHOH-CO ₂ Na) ₂ ·2H ₂ O	11m	110
Strontium formate	Sr(CHO ₂) ₂	8	55
Strontium formate hydrate	$Sr(CHO_2)_2 \cdot 2H_2O$ (orthorhombic)	8	56
Sucrose	C ₁₂ H ₂₂ O ₁₁	11m	66
Tartaric acid, D-	(CHOHCO ₂ H) ₂	7m	168
Δ ⁹ -Tetrahydrocannabinolic acid B	C ₂₂ H ₃₀ O ₄	16m	160
Thallium hydrogen phthalate	C ₈ H ₅ O ₄ T1	16m	75
Thiosemicarbazide	CH ₅ N ₃ S	17m	81
Thiourea	CH ₄ N ₂ S	17m	83
Trimethylammonium chloride	(CH ₃) ₃ NHC1	9m	113
2,4,6-Trinitrophenetole	$C_2H_5OC_6H_2(NO_2)_3$	8m	152
Urea	CO(NH ₂) ₂	7	61
Uric acid, phase 1, (calc. pattern)	C ₅ H ₄ N ₄ O ₃	8m	154
Uric acid (phase 1)	C ₅ H ₄ N ₄ O ₃	16m	78 162
Vinbarbital, form I	$C_{11}H_{16}N_2O_3$	16m	162
Zinc diimidazole chloride	$Zn(C_3H_4N_2)_2Cl_2$	7m	123 170
Zinc glutamate hydrate,	Zn(O ₂ CCHNH ₂ CH ₂ CH ₂ CO ₂)·2H ₂ O	7m	170

CUMULATIVE MINERAL INDEX

	Vol. or		V	ol. or	_
	Sec.	Page		Sec.	Page
Acanthite, Ag ₂ S	10	51	Clinobisvanite, BiVO ₄	3 m	14
Aeschynite CeNbTiO ₆	3m	24	Copper, Cu	1	15
Alabandite, MnS	4 7m	11 82	Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m 9	28
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Corundum, Al ₂ O ₃	12m	3 23
Anglesite, PbSO ₄	3	67	Covellite, CuS	4	13
Anhydrite, CaSO ₄	4	65	Cristobalite ($lpha$ or low) ${ m SiO_2}$		
Antarcticite, CaCl ₂ ·6H ₂ O	12m	16	(tetragonal)	10	48
Antimony, Sb	3 6m	14 52	Cristobalite (\alpha or low) SiO ₂	15m	180
Aragonite, CaCO ₃	3	53	(tetragonal, calculated pattern) Cristobalite (β or high) SiO ₂ (cubic)		42
Aragonite, CaCO3 (calculated pattern)	14m	44	Cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂	9m	23
Arcanite, K_2SO_4	3	62	Cryptohalite, (NH ₄) ₂ SiF ₆	5	5
Arsenic, As	3 1	6 51	Cuprite, Cu ₂ O	2	23
Arsenolite, As ₂ O ₃	7	18	*Derbylite, SbFe ₄ Ti ₃ O ₁₃ (OH) *Diamond, C	16m 2	89 5
Avicennite, Tl ₂ 0 ₃	16m	77	*Diaspore, Al ₂ O ₃ ·H ₂ O	3	41
*Azurite, Cu ₃ (OH) ₂ (CO ₃) ₂	10	30	Diopside, CaMg(SiO ₃) ₂	5m	17
*Bahianite, Al _{5.66} Fe _{0.09} Sb _{2.95} O ₁₆ .	16m	87	<pre></pre>	3m	47
Baryte, BaSO ₄	10m 10	12 3	Eitelite, Na ₂ Mg(CO ₃) ₂	11m	56
Berlinite, AlPO ₄ Berndtite, SnS ₂	9m	57	Elpasolite, K ₂ NaAlF ₆ * *Enstatite, MgSiO ₃	9m 6	43 32
*Beryl, Be ₃ Al ₂ Si ₆ O ₁₈	9	13	Epsomite, MgSO ₄ ·7H ₂ O	7	30
Bischofite, MgCl ₂ ·6H ₂ O	11m	37	Erythrosiderite, K ₂ FeCl ₅ ·H ₂ O	14m	27
Bismite, α -Bi ₂ 0 ₃	3m	17	Eskolaite, Cr ₂ O ₃	5	22
Bismoclite, BiOCl	4 3	54 20	Ettringite, Ca ₆ Al ₂ S ₃ O ₁₈ ·3lH ₂ O	8	3
Bismuth, Bi	5 m	13	Fairchildite, K ₂ Ca(CO ₃) ₂	8m 3m	48 22
Bixbyite, α -Mn ₂ O ₃	11m	95	Fluorapatite, $Ca_5F(PO_4)_3$ Fluorite, CaF_2	1	69
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63	Forsterite, Mg ₂ SiO ₄	1	83
Boehmite, Al ₂ O ₃ ·H ₂ O	3	38	Franklinite, ZnFe ₂ 0 ₄	9m	60
*Bombiccite, C ₂₀ H ₃₄	16m	122	Fresnoite, Ba ₂ TiSi ₂ O ₈	9m	14
Borax, Na ₂ B ₄ O ₅ (OH) ₄ ·8H ₂ O	16m 4	66 46	Gahnite, ZnAl ₂ O ₄	2 9	38 35
Bromargyrite, AgBr	1	36	Galaxite, MnAl ₂ O ₄ Galena, PbS	2	18
*Brookite, TiO ₂	3m	57	Gaspeite, NiCO ₃	lm	36
Brownmillerite, Ca ₄ Al ₂ Fe ₂ O ₁₀	16m	28	Geikielite, MgTiO ₃	5	43
Brucite, Mg(OH) ₂	6	30	Gersdorffite, NiAsS	lm	35
Bunsenite, NiO	11	47 52	Glauberite, Na ₂ Ca(SO ₄) ₂	6m 1	59 33
Burkeite, Na ₆ CO ₃ (SO ₄) ₂ *Butlerite, Fe(OH)SO ₄ ·2H ₂ O	11m 10m	95	Gold, Au Goslarite, ZnSO ₄ ·7H ₂ O	8	33 71
Cadmoselite, CdSe	7	12	Greenockite, CdS	4	15
Calcite, CaCO ₃	2	51	*Groutite, MnO(OH)	11m	97
Calomel, Hg ₂ Cl ₂	13m	30	Gypsum, CaSO ₄ ·2H ₂ O	17m	16
Carnallite, KMgCl ₃ ·6H ₂ O Carobbiite, KF	8m 1	50 64	Halite, NaCl	2 16m	41 122
Cassiterite, SnO ₂	l	54	*Hartite, C ₂₀ H ₃₄	10m	38
Celestite, SrSO4	2	61	*Hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ ·H ₂ O	2	62
Cerianite, CeO ₂	1	56	Hetaerolite, ZnMn ₂ O ₄	10m	61
Cerussite, PbCO ₃	2	56	*Hexahydroborite, Ca[B(OH) ₄] ₂ ·2H ₂ O	16m	104
Cervantite, Sb ₂ O ₄	10 3m	8 29	Hieratite, K_2SiF_6 Hopeite, $Zn_3(PO_4)_2 \cdot 4H_2O$	5 16m	50 85
Chernovite, YAsO ₄	2m	39	Huebnerite, MnWO ₄	2m	24
Chiolite, Na ₅ Al ₃ F ₁₄	16m	63	Humboldtine, FeC ₂ O ₄ ·2H ₂ O	10m	24
Chloraluminite, AlCl ₃ ·6H ₂ O	7	3	Humite, $Mg_7F_2Si_3O_{12}$	lm	30
Chlorargyrite, AgCl	4	44	Hydromolysite, FeCl ₃ ·6H ₂ 0	17m	40
Chloromagnesite, MgCl ₂ Chromatite, CaCrO ₄	11m 7	94 13	Hydrophilite, CaCl ₂	11m 15m	18 34
Chrysoberyl, BeAl ₂ O ₄	9	10	Indialite, Mg ₂ Al ₄ Si ₅ O ₁₈	lm	29
Cinnabar, HgS	4	17	Iodargyrite, AgI	8	51
Claudetite, As ₂ 0 ₃	3m	9	Iron, α-Fe	4	3
Clausthalite, PbSe	5	38	Jacobsite, MnFe ₂ O ₄	9	36
*			*Julgoldite, Ca ₂ Fe ₃ Si ₃ O ₁₀ (OH,O) ₂ (OH) ₂	10m	72
Natural mineral			002103013010(0n,0)2(0n)2	10111	, 2

	Vol. or Sec.	Paga		Vol. or	Daga
	bec.	Page		Sec.	Page
Kalistrontite, $K_2Sr(SO_4)_2$	14m	31	*Pirssonite, Na ₂ Ca(CO ₃) ₂ ·2H ₂ O	9m	106
Kieserite, $MgSO_4 \cdot H_2O$ Kremersite, $(NH_4,K)_2FeCl_5 \cdot H_2O$	16m 14m	46 8	Platinum, Pt Portlandite, Ca(OH) ₂	1 1	31 58
Langbeinite, $K_2Mg_2(SO_4)_3$	6m	40	Potash alum, $KA1(SO_4)_2 \cdot 12H_2O$	6	36
Lautarite, $Ca(IO_3)_2$	14m	12	Powellite, CaMoO ₄	6	22
Lead, Pb	1	34	Pyrargyrite, Ag ₃ SbS ₃	5m	51
*Leucophanite, NaCaBeFSi ₂ O ₆	8m	138	Pyrite, FeS ₂	5	29
Libethenite, Cu ₂ (OH)PO ₄	17m	30	*Pyroaurite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O Pyrolusite, β-MnO ₂	10m 10m	104 39
$(0,0H)_3(0H,F)$	16m	42	Pyrope, Mg ₃ Al ₂ (SiO ₄) ₃	4m	24
Lime, CaO	1	43	Pyrophanite, MnTiO ₃	15m	42
Lime, CaO (calculated pattern)	14m	49	*Quartz, SiO ₂ (α or low)	3	24
* Linarite, CuPb(OH) ₂ (SO ₄)	16m 2	34 30	Rammelsbergite, NiAs ₂	10	42 36
Litharge, PbO (red) Lithiophosphate, Li ₃ PO ₄	4m	21	Retgersite, NiSO ₄ ·6H ₂ O	7 7	32
Loellingite, FeAs ₂	10	34	Romarchite, SnO	4	28
Loeweite, $Na_{12}Mg_7(SO_4)_{13} \cdot 15H_2O \dots$	14m	35	*Roscherite, (monoclinic),		
Lopezite, K ₂ Cr ₂ O ₇	15m	47	Be ₂ Ca(Fe _{.3} Mg _{.7}) ₂ Al _{.67} (PO ₄) ₃ ·2H ₂ O	16m	96
*Loveringite, Ca _{.72} RE _{.33} (Y,Th,U,			*Roscherite, (triclinic), Be ₄ Ca ₂		
Pb). ₀₅ Ti _{12.48} Fe _{3.38} Cr _{2.24} Mg _{.92} Zr _{.58} Al _{.39} V _{.21} Mn _{.04} O _{.38}	16m	106	(Mn _{3.91} Mg _{.04} Ca _{.05})(Al _{.13} Fe _{.42} Mn _{.12}) (PO ₄) ₆ (OH) ₄ ·6H ₂ O	16m	100
Macedonite, PbTiO ₃	5	39	Rutile, TiO ₂	7m	83
Magnesiochromite, MgCr ₂ O ₄	9	34	Safflorite, CoFeAs ₄	10	28
Magnesite, MgCO ₃	7	28	Salammoniac, NH ₄ Cl	1	59
Magnetite, Fe_3O_4	5m 10	31 31	Sanbornite, β-BaSi ₂ O ₅	13m 2m	10 40
Malladrite, Na ₂ SiF ₆	16m	68	Sanmartinite, ZnWO ₄ Scacchite, MnCl ₂	2111 8m	43
Manganolangbeinite, $K_2Mn_2(SO_4)_3$	6m	43	*Scheelite, CaWO ₄	6	23
Manganosite, MnO	5	45	Schultenite, PbHAsO ₄	14m	18
Marshite, CuI	4	38	Selenium, Se	5	54
Mascagnite, (NH ₄) ₂ SO ₄	9 2	8 32	Selenolite, SeO ₂ Sellaite, MgF ₂	7m 4	60 33
Matlockite, PbFCl	13m	25	Senarmontite, Sb_2O_3	3	31
Matteuccite, NaHSO ₄ ·H ₂ O	9m	52	Shcherbinaite, V ₂ O ₅	8	66
Mayenite, Ca ₁₂ Al ₁₄ O ₃₃	9	20	*Siderite, FeCO ₃	15m	32
Melanterite, FeSO ₄ ·7H ₂ O	8m	38	Silver, Ag	1	23
*Meliphanite, Na _{.63} Ca _{1.37} BeAl _{.13} Si _{1.87} O _{6.25} F _{.75}	8m	135	Silver, Ag (reference standard) *Sjögrenite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O	8m 10m	2 103
Metaborite, HBO ₂	4m	27	Skutterudite, CoAs ₃	10	21
Metacinnabar, HgS	4	21	*Smithsonite, ZnCO ₃	8	69
Miargyrite, AgSbS ₂	5m	49	Soda alum, NaAl(SO ₄) ₂ ·12H ₂ O	15m	68
*Millerite, NiS	lm o	37	*Sodalite, Na ₈ Si ₆ Al ₆ O ₂₄ Cl ₂	7m	158
Minium, Pb ₃ O ₄	8 9m	32 34	Soda niter, NaNO ₃	6 10	50 24
Molybdenite, MoS ₂	5	47	Sphalerite, ZnS	2	16
Molybdite, MoO_3	3	30	Spinel, MgÁl ₂ O ₄	9m	25
Monteponite, CdO	2	27	Stibnite, Sb ₂ S ₃	5	6
Montroydite, HgO	9 3m	39 3	Stilleite, ZnSe Stolzite, PbWO ₄	3 5m	23 34
Nantokite, CuCl	4	35	Strontianite, SrCO ₃	3	56
*Newberyite, MgHPO ₄ ·3H ₂ O	7m	139	Struvite, MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Niter, KNO ₃	3	58	Sulfur, S (orthorhombic)	9	54
Nitrammite, NH ₄ NO ₃	7	4	Sylvite, KCl	1 14m	65 25
Nitrobarite, Ba(NO ₃) ₂ Norbergite, Mg ₃ F ₂ SiO ₄	11m 10	14 39	Syngenite, K ₂ Ca(SO ₄) ₂ ·H ₂ O Szmikite, MnSO ₄ ·H ₂ O	14m	49
Oldhamite, CaS	7	15	Tellurantimony, Sb ₂ Te ₃	3m	8
Otavite, CdCO ₃	7	11	*Tellurite, TeO ₂	9	57
Oxammite, $(NH_4)_2C_2O_4 \cdot H_2O \dots$	7	5	Tellurium, Te	1	26
Palladium, Pd Palladseite, Pd ₁₇ Se ₁₅	1 16m	21 139	Tellurobismuthite, Bi ₂ Te ₃ Tenorite, CuO	3m 1	16 49
Palmierite, $K_2Pb(SO_4)_2$	14m	30	Teschemacherite, NH ₄ HCO ₃	9	5
*Paratellurite, TeO ₂	10	55	Thenardite, Na ₂ SO ₄	2	59
Paratellurite, TeO ₂	7	56	Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
Periclase, MgO	1	37	"Thomsenolite, NaCaAlF ₆ ·H ₂ O	8m 1	132 57
Perovskite, CaTiO ₃ *Phenakite, Be ₂ SiO ₄	9m 8	17 11	Thorianite, ThO_2	7 m	58
Picromerite, $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54	Tiemannite, HgSe	7	35

	Vol. or	
	Sec.	Page
Tin, α-Sn (cubic)	2	12
Tin, β-Sn (tetragonal)	1	24
*Topaz, Al ₂ SiO ₄ (F,OH) ₂	1m	4
Trevorite, NiFe ₂ O ₄	10	44
Trippkeite, CuAs ₂ O ₄	16m	120
*Trona, Na ₃ H(CO ₃) ₂ ·2H ₂ O	15m	71
Tschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
Tungstenite, WS ₂	8	65
Unnamed mineral, K _{1.16} Ba _{.72} Fe _{.36}		
Ti _{5,58} 0 ₁₃	16m	147
Uraninite, UO ₂	2	33
Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃	10	17
*Valentinite, Sb ₂ O ₃	10	6
Vanthoffite, Na ₆ Mg(SO ₄) ₄	15m	72
Villiaumite, NaF	1	63
Vivianite, Fe ₃ (PO ₄) ₂ ·8H ₂ O	16m	38
Wakefieldite, YVO ₄	5m	59
Willemite, Zn ₂ SiO ₄	7	62
Witherite, BaCO ₃	2	54
Wulfenite, PbMoO ₄	7	23
Wurtzite, ZnS	2	14
*Xanthoconite, Ag ₃ AsS ₃	8m	126
Xenotime, YPO ₄	8	67
Yavapaiite, $KFe(SO_4)_2$	16m	59
Zinc, Zn	1	16
Zincite, ZnO	2	25
Zinkosite, ZnSO ₄	7	64
*Zircon, ZrSiO ₄	4	68
Zircosulfate, Zr(SO ₄) ₂ ·4H ₂ O	7	66

NBS-114A (REV. 2-80)			
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No	3. Publication Date
BIBLIOGRAPHIC DATA	REPORT NO. NBS MN 25 Sect. 17		O-t-1 1000
SHEET (See instructions)	NDS III 23 Bect. 17		October 1980
4. TITLE AND SUBTITLE			
	ffraction Powder Patt	erns	
Section 1/ - Data	for 54 Substances		
5. AUTHOR(S)			
Marlene C. Morris	, Howard F. McMurdie,	Eloise H. Evans, Bori	s Paretzkin, Camden R.
Hubbard and Simon	J. Carmel TION (If joint or other than NB		
6. PERFORMING ORGANIZA	TION (II Joint or other than N.B.	s, see instructions,	7. Contract/Grant No.
NATIONAL BUREAU OF		International Centre	
DEPARTMENT OF COMMIT WASHINGTON, D.C. 2023		raction Data,	8. Type of Report & Period Covered
WASHINGTON, D.C. 2023	Swarthmo	ore, PA 19081	Final
9. SPONSORING ORGANIZAT	TION NAME AND COMPLETE	ADDRESS (Street, City, State, ZII	P)
Same as above.			
			·
10. SUPPLEMENTARY NOTE	S		
Library of Congres	ss Catalog Card Numbe	r: 53-61386	
Nocument describes a	computer program: SF-185, FII	S Software Summary, is attached	
		significant information. If docum	
bibliography or literature s	survey, mention it here)	0	
Standard x-ra	av diffraction patter	ns are presented for 5	64 substances. The
		ns are presented for 5	
experimental x-ray	y powder diffraction	patterns were obtained	l with an x-ray
experimental x-ray diffractometer.	y powder diffraction All d-values were ass	patterns were obtained igned Miller indices d	l with an x-ray letermined by
experimental x-ray diffractometer. A comparison with co	y powder diffraction All d-values were ass omputed interplanar s	patterns were obtained igned Miller indices d pacings consistent wit	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with coextinctions. The	y powder diffraction All d-values were ass omputed interplanar s densities and lattic	patterns were obtained igned Miller indices d pacings consistent wit e constants were calcu	l with an x-ray letermined by .h space group
experimental x-ray diffractometer. A comparison with convertions. The refractive indices	y powder diffraction All d-values were assomputed interplanar s densities and lattic s were measured in so	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	l with an x-ray letermined by th space group lated and the
experimental x-ray diffractometer. A comparison with convex extinctions. The refractive indices	y powder diffraction All d-values were assomputed interplanar somputed interplanar some were measured in some some measured in some measured i	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	letermined by the space group thated and the
experimental x-ray diffractometer. A comparison with converted extinctions. The refractive indices of the refractive indic	y powder diffraction All d-values were assomputed interplanar somputed interplanar some measured in some measured in some measured in some entries; alphabetical order; cos; lattice constants;	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	letermined by the space group thated and the
experimental x-ray diffractometer. A comparison with convex extinctions. The refractive indices	y powder diffraction All d-values were assomputed interplanar somputed interplanar some measured in some measured in some measured in some entries; alphabetical order; cos; lattice constants;	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	letermined by the space group thated and the
experimental x-ray diffractometer. A comparison with converted extinctions. The refractive indices of the refractive indic	y powder diffraction All d-values were assomputed interplanar somputed interplanar some measured in some measured in some measured in some entries; alphabetical order; cos; lattice constants;	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	letermined by the space group thated and the separate key words by semicolons) trence intensities;
experimental x-ray diffractometer. A comparison with convex extinctions. The refractive indices of the refractive indices	y powder diffraction All d-values were assomputed interplanar somputed interplanar some measured in some measured in some measured in some entries; alphabetical order; cos; lattice constants;	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	letermined by the space group thated and the separate key words by semicolons) trence intensities;
experimental x-ray diffractometer. A comparison with converted extinctions. The refractive indices of the refractive indic	y powder diffraction All d-values were assomputed interplanar somputed interplanar some measured in some measured in some measured in some entries; alphabetical order; cos; lattice constants;	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	letermined by the space group thated and the separate key words by semicolons) trence intensities;
experimental x-ray diffractometer. A comparison with convex extinctions. The refractive indices of the refractive indices	y powder diffraction All d-values were assomputed interplanar somputed interplanar somputed and lattices were measured in some entries; alphabetical order; cos; lattice constants; iffraction.	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases.	l with an x-ray letermined by th space group lated and the separate key words by semicolons) trence intensities; 14. NO. OF PRINTED PAGES 114
experimental x-ray diffractometer. A comparison with convex extinctions. The refractive indices of the refractive indices	y powder diffraction All d-values were assomputed interplanar somputed interplanar somputed and lattices were measured in some entries; alphabetical order; cos; lattice constants; iffraction.	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases. apitalize only proper names; and powder patterns; refe	with an x-ray letermined by th space group lated and the separate key words by semicolons) trence intensities; 14. NO. OF PRINTED PAGES 114
experimental x-ray diffractometer. A comparison with converted extinctions. The refractive indices of the refractive indic	y powder diffraction All d-values were assomputed interplanar somputed interplanar somputed and lattices were measured in some entries; alphabetical order; cos; lattice constants; iffraction.	patterns were obtained igned Miller indices d pacings consistent wite constants were calcume cases. apitalize only proper names; and powder patterns; refe	l with an x-ray letermined by th space group lated and the separate key words by semicolons) trence intensities; 14. NO. OF PRINTED PAGES 114

Most reliable source ded Johniy by the Wattonal Bureau for identification of crystalline materials entee for Diffraction Data. olumes 3 Important Compiled at the National Bureau of Standards, the for materials Cambridge Crystallographic Data Centre (England), and characterization, the U.S. Geological Survey. phase analysis. alloy and solid solution studies. Two new volumes have been added to the popular Third Edition Series and materials of Crystal Data-Determinative Tables to update and expand the coverdesign age of this essential reference work for the characterization of crystalline materials. Volume 3 continues the coverage of Volume 1 on organic and organometallic ssential crystals with data on over 12,000 substances published from 1967 to 1974. Volume 4 conor chemists, tinues the coverage of Volume 2 on inorganic and mineral crystals with listings for more than etallurgists, 11,000 substances from 1967 to 1969. eramicists, solid Cell dimensions, space group or diffraction aspect, the number of formula units per unit cell, crystal structure (whether determined), measured density, and x-ray calculated density late physicists, are given for each entry. ineralogists, The name of the compound, chemical formula, literature references, and the transformation rystallographers, matrix are also given. nd biochemists When available, data on crystal structure type, crystal habit, cleavages, twinning, color, optical properties, indices of refraction, melting point, and transition point are included. Contains information on inorganics, organics, organometallics. minerals, drugs, pesticides, metals, and intermetallics Please accept my order for: Address all orders to: DERING **CRYSTAL DATA—DETERMINATIVE TABLES** JCPDS-International Centre **FORMATION** for Diffraction Data THIRD EDITION 1601 Park Lane Swarthmore, Pa. 19081 Ship volumes $1 \square$, $2 \square$, 3 □, 4 □, or Years of Number of entire set . (Check appropriate boxes) Materials Coverage **Entries Price** To: Organics, Organometallics thru 1966 8,000 \$30 Name Inorganics, Metals, Minerals thru 1966 16,000 \$50 Organization ___ Organics, Organometallics 1967-74 12,000 \$65 Address _ Inorganics, Metals, Minerals 1967-69 11,000 \$65 City _ ecial price for 4 volume set \$185. enayments required on foreign orders State Zip Code

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$13; foreign \$16.25. Single copy, \$3 domestic; \$3.75 foreign.

NOTE: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic \$11; foreign \$13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (A1P). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: domestic \$35; foreign \$45.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: \$30.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$45. Please send subscription orders and remittances for the preceding bibliographic services to the National Bureau of Standards, Cryogenic Data Center (736) Boulder, CO 80303.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, O.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK